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PART A - (10 x 1 = 10 Marks)

1. Iteration method converges if |g (x)| CO6- U
(@ >1 (b)<1 (c)=0 (d) >0

2. When Gauss Elimination method is used to solve AX=B, A is CO6- U
transferred in a matrix
(a) lower triangular  (b) upper triangular  (c) square (d) zero

3. The auxiliary equation of the equation XZ% + 4x2—3yc + 2y = e*is CO2-App
(@)m?- 4 m +5=0 (bym*+3m-2=0  (c) m*+3m +2=0 (d)2 m*+5m -7=0

4. The solution of (D*+D*-D-1)y=0is CO2-App
(a) Ae* + Bxe* + Cx%e* (b) (Ax + B)e* + C e™
(c) e + (cos 2x + i sin 2x) (d) (Ax + B)e™ + C ¢

5. Gauss Divergence theorem is a relation between CO6-U
(@) line and volume integral (b) line integral and surface integral
(c) surface integral and volume integral (d) volume integral and line integral

2
If we take z = log x and 6 = <, then X2 =
dx dx

CO6-U
(@) (6-1)y (b) 6 (6-1)y (c) 6%y (d) (62 — Dy



10.

11.
12.
13.

14.
15.

16.

17.

If a function f(x) is even, its Fourier expansion contains only ------- terms

CO6- U

(@) First harmonic  (b) Second harmonic  (c) Third harmonic  (d) Fourier Coefficients

The Fourier constant b, in (-m,m) for X sin X is

(a) X° (b) 3x (€)0
I f(x) is an odd function then [* f(x)dx =
1 ra a
(@0 (b)5 f, f(x)dx © 2 [, flx)dx
In Modulation property, F[f(x) cosax] =
(@) %[F(s+a)— F(s—a)] (b) %[F(s+a)+F(s-a)]
(©) [F(s+a)-F(s—a)] (dF(s+a)+F(s—a)

PART — B (5 x 2= 10Marks)

State Newton’s Iterative formula

Find the Particular Integral of (D? + 1) y = sin x
Is the position vector r = xi +yj + zK irrotational? Justify.

What you meant by Harmonic analysis?

1 ,xl<2
0 ,Llx|>2

PART — C (5 x 16= 80Marks)

Find the Fourier transform of f(x) = {

(@) (i) Using Power method find numerically largest Eigen value of

25 1 2
1 3 0
2 0 -4

(ii) Solve 28x+4y-z = 32: x+3y+10z = 24 ; 2x+17y+4z = 35 by
Gauss Seidal method
Or
(b) (i) Solve for a positive root of 3x —cos x - 1 =0 by Newton’s
Raphson method .
(ii) Solve 4x + 2y +z = 14, x + 5y -z = 10, X + y + 8z =20 by
Gauss Elimination method

(@) (i) Using method of variation of parameters solve (D* + 4)y =
4tan 2x.

(ii) Solve (D + 4xD + 2)y = x+ -
X

CO4-App
(d)1
CO6-U

(d) f, f(x)dx
CO6-U

CO6- U
CO2 App
CO3 App

CO6- U
CO5 App

CO1 App (8)

CO1 App (8)

CO1 App (8)

CO1 App (8)

CO2 App (8)

CO2 App (8)
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18.

19.

(b)

(a)

(b)

(@)

(b)

Or
(i) Using method of variation of parameters solve (D? + 4)y = cot
2X.

2
(i) Solve (xX*D* - xD + 1)y = (mj
X

(i) Prove that E = (x2 + xy2)i +(y2 +x2y)j is irrotational vector and
find the Scalar potential such that F = V@.
(ii) Evaluate Stoke’s theorem for'f(x2 —y? )jx +2xydy , where C is
bounded by x—0,x=a, y=0 and y=b

Or
Verify Green’s theorem for I (x2 + yz)jx —2xydy, where C is

bounded by
xta, y=0 and y=Db

(i) Express f(x)= %(n—x)as a Fourier series of period 2z in the

internal 0 <x<2m.
(if) The table of values of the function y = f(x) is given below:

X 0 7T/3 2n/3 T 4n/3 57r/3 21

y: 18| 03 05 | 26 | 13 1.7 1.8

Find a Fourier series up to the third harmonic to represent f(x) in
terms of x.

Or
(i) Find the Half range cosine series for f(x)=xin (0, 7). Deduce
o0 4
that Y i4 =z,
n=odd N° P
(i) Find the Fourier series of f(x) = x+x° in(-xz,z) of

periodicity 2n. Hence deduce that the value of the sum

0 1 72_2
2 7=

CO2 App

CO2 App

CO3 App

CO3 App

CO3 App

CO4 App

CO4 App

CO4 App

CO4 App
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(8)
(8)

(8)

(8)

(16)

(8)

(8)

(8)

(8)



20. (a) (i) Find the Fourier sine & cosine transform of e CO5App (8)
(ii) Evaluate CO5 App (8)

%

(x2 1 25)2
Or
(b) (i) Find the Fourier cosine transform of X", 0 <n <1, x>0 and CO5App  (8)

hence deduce that 1 is self-reciprocal under the Fourier cosine

Jx

transform.
(i1) Evaluate CO5App  (8)

I

0 (x2 +a )(x +b2)
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