A		Reg. No. :										
		Question Pape	r Cod	e: R2	2M(02						
	B.E./B.Tech. DEGREE EXAMINATION, NOV 2024 Second Semester											
		Second	Semeste	er								
		Mechanical	Engine	ering								
	R21UMA202	- CALCULUS, FOUR	IER SE	ERIES	AN	ID N	UM	ERIC	CAL	ME	ГНО	DS
		(Regulatio	ons R20	21)								
(Common to Chemical Engineering)												
Dur	ation: Three hours						М	laxin	num:	100	Mar	ks
		Answer AL	L Ques	tions								
PART A - $(10 \text{ x } 1 = 10 \text{ Marks})$												
1.	Iteration method con-	verges if $ g'(x) $									CO	5- U
	(a) >1	(c)=((c)=0 (d) >0									
2.	When Gauss Elimination method is used to solve AX=B, A isCO6- Utransferred in a matrix							6- U				
	(a) lower triangular	(b) upper triangular	(c) so	quare				((d) ze	ero		
3.	The auxiliary equation of the equation $x^2 \frac{d^2 y}{dx^2} + 4x \frac{dy}{dx} + 2y = e^x$ is CO2-A							App				
	$(a)m^2 - 4m + 5 = 0$	(b) m^2 +3 m -2=0	(c) 1	n^2+3n	n +2	=0		((d)2 :	$m^{2}+3$	5 <i>m</i> -	-7=0
4.	The solution of $(D^3 + D^2 - D - 1)y = 0$ is									C	202	App
	(a) $Ae^x + Bxe^x + Cx^2$	e ^x	(b) (<i>L</i>	Ax + I	B)e ^x	+ C	e ^{-x}					
	(c) $e^{-x} + (\cos 2x + i \sin 2x)$	(d) $(Ax + B)e^{-x} + C e^{x}$										
5.	. Gauss Divergence theorem is a relation between										CO	6-U
	(a) line and volume in	ntegral	(b) li	ne int	egra	l and	surf	face	integ	ral		
(a) line and volume integral(b) line integral and surface integral(c) surface integral and volume integral(d) volume integral and line integral												
6.	If we take $z = \log x$	and $\theta = \frac{d}{dx}$, then $x^2 \frac{d^2}{dx}$	$\frac{x^2y}{x} = $								CO	6-U
	(a) (<i>θ</i> -1)y	(b) θ (θ -1)y	(c) <i>θ</i>	² y					(d) (θ ²	² – 1	.)y

7.	If a function f(x) is even, its Fourier expansion contains only terms CO6-U							CO6- U			
	(a) I	First harmonic	(b) Second harmon	nic (a	c) Third harmonic	(d) Fo	ourier Coeffi	cients			
8.	The	Fourier constan	t b_n in $(-\pi,\pi)$ for x since the set of	in x is			CO	4-App			
	(a) x	x^2	(b) 3x	((c) 0		(d) 1				
9.	If f(x) is an odd fun	ction then $\int_{-a}^{a} f(x) d$	x =			(CO6-U			
	(a) ()	$(b)\frac{1}{2}\int_0^a f(x)dx$	((c) $2\int_0^a f(x)dx$		(d) $\int_0^a f(x)$	dx			
10.	In M	Iodulation prop	erty, $F[f(x) \cos x]$	=			(CO6-U			
	(a) -	$\frac{1}{2}[F(s+a)-F(s-a)]$	<i>ı</i>)]	((b) $\frac{1}{2}[F(s+a)+F(s-a)]$						
	(C) $[F(s+a)-F(s-a)]$				(d) $F(s + a) + F(s - a)$						
			PART – B	(5 x 2=	= 10Marks)						
11.	Stat	te Newton's It		CO6- U							
12.	Find the Particular Integral of $(D^2 + 1) y = \sin x$						CO2 App				
13.	Is the position vector $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$ irrotational? Justify.							CO3 App			
14.	What you meant by Harmonic analysis?						CO6- U				
15.	Find the Fourier transform of $f(x) = \begin{cases} 1 & x < 2 \\ 0 & x > 2 \end{cases}$						CO5 App				
			PART –	C (5 x	16= 80Marks)						
16.	(a)	(i) Using Pow $\begin{pmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{pmatrix}$	ver method find num	nerical	ly largest Eigen val	ue of	CO1 App	(8)			
		(ii) Solve 28x Gauss Seidal n	+4y-z = 32: $x+3y+1nethod$	0z = 2	24; $2x+17y+4z = 3$	35 by	CO1 App	(8)			
	(b)	(i) Solve for a Raphson method	positive root of 3x	$-\cos$	x - 1 = 0 by New	ton's	CO1 App	(8)			
		(ii) Solve 4x - Gauss Elimina	+ 2y + z = 14, x + 5 tion method	ý -z =	= 10, x + y + 8z = 2	20 by	CO1 App	(8)			
17.	(a)	(i) Using meth 4tan 2x.	od of variation of pa	ramete	ers solve $(D^2 + 4)y =$	=	CO2 App	(8)			
		(ii) Solve (x ² D	$^{2} + 4xD + 2)y = x +$	$\frac{1}{x}$			CO2 App	(8)			

R2M02

Or

(b) (i) Using method of variation of parameters solve $(D^2 + 4)y = \cot$ CO2 App (8) 2x.

(ii) Solve
$$(x^2D^2 - xD + 1)y = \left(\frac{\log x}{x}\right)^2$$
 CO2 App (8)

18. (a) (i) Prove that $\vec{\mathbf{F}} = (\mathbf{x}^2 + xy^2)\vec{\mathbf{i}} + (\mathbf{y}^2 + \mathbf{x}^2y)\vec{\mathbf{j}}$ is irrotational vector and CO3 App (8) find the Scalar potential such that $\vec{F} = \nabla \emptyset$. (ii) Evaluate Stoke's theorem for $\int (x^2 - y^2) dx + 2xy dy$, where C is CO3 App (8) bounded by x - 0, x = a, y = 0 and y = bOr

- (b) Verify Green's theorem for $\int (x^2 + y^2) dx 2xy dy$, where C is CO3 App (16) bounded by $x \pm a, y = 0$ and y = b
- 19. (a) (i) Express $f(x) = \frac{1}{2}(\pi x)$ as a Fourier series of period 2π in the CO4 App (8) internal $0 < x < 2\pi$. (ii) The table of values of the function y = f(x) is given below: CO4 App (8)

X	0	$\pi/3$	$2\pi/_{3}$	π	$4\pi/_{3}$	$5\pi/_{3}$	2π
y:	1.8	0.3	0.5	2.6	1.3	1.7	1.8

Find a Fourier series up to the third harmonic to represent f(x) in terms of x.

Or

(b) (i) Find the Half range cosine series for $f(x) = x \text{ in } (0, \pi)$. Deduce CO4 App (8)

that
$$\sum_{n=odd}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{96}$$
.

(ii) Find the Fourier series of $f(x) = x + x^2$ in $(-\pi, \pi)$ of CO4 App (8) periodicity 2π . Hence deduce that the value of the sum $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$

20.	(a)	(i) Find the Fourier sine & cosine transform of e^{-ax} .	CO5 App	(8)
		(ii) Evaluate	CO5 App	(8)
		$\int_{0}^{\infty} \frac{dx}{(x^2+25)^2}$		
		Or		
	(b)	(i) Find the Fourier cosine transform of x^{n-1} , $0 < n < 1$, $x > 0$ and	CO5 App	(8)
		hence deduce that $\frac{1}{\sqrt{x}}$ is self-reciprocal under the Fourier cosine		
		transform.		
		(ii) Evaluate	CO5 App	(8)
		$\int_{0}^{\infty} \frac{dx}{(x^2 + a^2)(x^2 + b^2)}$		