A		Reg. No. :												
		Question	n Pa	ner		de:	U 4	702						
B.E. / B. Iech. DEGREE EXAMINATION, NOV 2024														
	Fourth Semester													
Mechanical Engineering														
21UME402 - APPLIED THERMAL ENGINEERING														
(Regulations 2021)														
Dura	ation: Three hours								N	laxin	num	: 100	Mai	KS
	Answer ALL Questions													
	PART A - $(10 \text{ x } 1 = 10 \text{ Marks})$													
1.	Constant pressure cycle	is											CC	91 U
	(a) Otto cycle (b) Dual cycle		(0	e) Di	esel	cycle	e		((d) B	rayto	on cy	cle
2.	Compression ratio of Otto cycle is											CC	•1 U	
	(a) V_1/V_2 (b) V_3/V_2		(c	v) V ₂	V_1				((d) V	V_2/V_3		
3.	Spark plug is used in												CC	01 U
	(a) Petrol engine	(b) Marine en	igine	(0	e) Di	esel	engi	ne		((d) S	tirlin	g en	gine
4.	In a diesel engine, the duration between the time of injection and CO1 U ignition, is known as									•1 U				
	(a) pre-ignition period	(b) delay per	iod	(c	e)per	iod o	of igi	nitio	1	((d) b	urnin	ig pe	riod
5.	The steam governor is used to										CC	91 U		
	(a) Store energy			(t	(b) Convert energy									
	(c) Maintain speed				(d)Balancing weight									
6.	The ratio of the work of blades, is called	ne on the bla	des t	o the	e ene	ergy	supp	olied	to th	ne			CC	01 U
	(a) blading efficiency			(t	o) no	zzle	effic	eienc	у					
	(c) gross or stage efficiency (d)mecha					chan	ical	effic	iency	у				
7.	Multistage compressor i	s used to obta	in										CC	01 U
	(a) High velocity air			(t) Hi	gh p	ressi	ire a	ir					
	(c) Low velocity air			(0	l) Lo	w pi	essu	re ai	r					

8.	The	The maximum temperature in a gas turbine is						CO1 U			
	(a) 2	00°C (b)500°C (c) 700°C				(d) 1000°C					
9.	The pres	humidity ratio c ent in	or specific humidity	is the	mass of water	vapor	(CO1 U			
	(a) 1	m^3 of wet air	(d) above all								
10.	A va	apour absorption r	bsorption refrigerator usesas a refrigerant.				CO1 U				
	(a) v	water	(b) ammonia		(c) Freon	(d)	aqua-ammonia				
			PART – B (5 2	x 2= 10	Marks)						
11.	Clas	ssify the various ga	CO1 U								
12.	Sum	marize major part	CO1 U								
13.	Out	line stagnation ent	CO1 U								
14.	Clas	ssify the various ty		CO1 U							
15.	Con	Compare absolute humidity and relative humidity						CO1 U			
			PART – C (5 x 16=	= 80Marks)						
16.	(a)	Explain the Otto cycle with P-V and T-S diagram and derive the expression for air standard efficiency of the Otto cycle						(16)			
	(b)	Explain the Dua expression for air	CO1 U	(16)							
17.	(a)	(a) Explain the working of Battery ignition system with neat sketch Or					CO1 U	(16)			
	(b)	Explain IC Engir	CO1 U	(16)							
18.	(a)) Dry saturated steam enters a steam nozzle at a pressure of 12 bar and is discharged to a pressure of 1.5 bar. If the dryness fraction of a discharged steam is 0.95, what will be the final velocity of steam? Neglect initial velocity of steam Or					CO3 App (16				
	(b)	Steam at 20 bar nozzles. The bar loss in the conver available in the required to disch 3.97 cm^2 .also det	and 250 [°] C enters a g ck-up pressure of no rgent part. Assume a e divergent part. Fi harge 13.6kg/s. The t termine the area of ex	group c ozzle i loss of nd the hroat a ist of e	of convernt –dive s 0.07bar.Negled 10 %of enthalpy e number of no area of each noz each nozzle	ergent et the drop ozzles zle is	CO3 App	(16)			

19. (a) A single acting reciprocating air compressor has cylinder diameter CO1 App (16) and stroke of 200mm and 300mm respectively. The compressor sucks air at 1 bar and 27 0 C and delivers at 8 bar while running at 100 rpm. Find (i) Indicated power of the compressor (ii) Mass of air delivered by the compressor per min. (iii) Temperature of the air delivered by the compressor. The compression follows the law $PV^{1.25} = C$.

Or

- (b) A single acting two stage air compressor deals with 2.5 litres of air CO1 App (16) at 1.2 bar and 25°C with speed of 350 rpm delivery pressure is 8 bar. Assuming complete intercooling, find the maximum power required by the compressor and the bore and stroke compressor. Assume a piston speed of 3m/s ,mechanical efficiency of 75 %, volumetric efficiency 80% per stage. Assume polytrophic index of compression in both the stages to 1.35 & neglect clearance
- 20. (a) In a refrigeration plant working on Bell Coleman cycle, air is CO4 App (16) compressed to 5 bar from 1 bar. Its initial temperature is 10° C. After compression, the air is cooled up to 20° C in a cooler before expanding back to a pressure of 1 bar. Determine the theoretical C.O.P. of the plant and net refrigerating effect. Take $C_p=1.005$ kJ/kg and $C_v=0.718$ kJ/kg

Or

(b) Find the least power of a perfect reversed heat engine that makes CO4 App (16) 400kg/kg of ice per hour at -8^{0} C feed water at 18^{0} C. Assume specific heat of ice as 2.09 kJ/kg and latent heat 334 kJ/kg.

U4702