A	
\mathbf{A}	
∡ ⋋	

Reg. No. :										
------------	--	--	--	--	--	--	--	--	--	--

Question Paper Code: 55704

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2024

Fifth Semester

		Mechanical	l Engi	ineering		
		15UME504 - OPER	ATIO	NS RESEARCH		
		(Regulat	tion 2	015)		
Dur	ration: Three hours				Maxin	num: 100 Marks
		Answer AI	LL Qu	estions		
		PART A - (10	x 1 =	10 Marks)		
1.	Linear programming p	roblem involving only	two v	variable can be solve	ed by	CO1- R
	(a) Big M method		(b)	Simplex method		
	(c) Graphical method		(d)	None of the these		
2.	The linear function of	the variables which is t	to be 1	maximize or minimi	ize is ca	lled CO1- R
	(a) Constraints	(b) Objective function	n	(c) Decision varia	able	(d) None of them
3.	MODI method is also	called as				CO2- R
	(a) North west comer r	ule	(b) l	Least cost method		
	(c) U-V method		(d) S	Stepping stone meth	od	
4.	Johnson's algorithm is	used to find for		_ problem.		CO2- R
	(a) Transportation	(b) Travelling salesm	an	(c) Sequencing		(d) Assignment
5.	The critical path of a n	etwork is the				CO3- R
	(a) Path with the fewer	st activities	(b)	Shortest time path t	hrough	the network
	(c) Longest time path	through the network	(d)	Path with the most	activitie	es

6.	5. In a CPM / PERT network a dummy activity is necessary when						
	(a) Two activities have the same starting node						
	(b) Two activities have the same ending node						
	(c) A node does not actually connect to another no	od					
	(d) When two activities share the same starting an	d ending node					
7.	One of the important basic objective of inventory r	management is	CO4- R				
	(a) To calculate EOQ for all materials in the organ	nization					
	(b) To go in person to the market and purchase the	e materials					
	(c) To employ the available capital efficiently so a	s to yield maximum results					
	(d) Once materials are issued to the departments, I	personally check how they	are used				
8.	Group replacement policy is most suitable for		CO4- R				
	(a) Trucks (b) Infant machines	(c) Street light bulbs	(d) New cars				
9.	A mixed strategy game can be solved by		CO5- R				
9.	A mixed strategy game can be solved by (a) Algebraic method	(b) Matrix method	CO5- R				
9.		(b) Matrix method(d) All of the above	CO5- R				
9.	(a) Algebraic method	(d) All of the above	CO5- R				
	(a) Algebraic method(c) Graphical Number of players	(d) All of the above					
	(a) Algebraic method(c) Graphical Number of playersThis department is responsible for the development	(d) All of the above t of queuing theory					
	(a) Algebraic method(c) Graphical Number of playersThis department is responsible for the development(a) Railway station	(d) All of the abovet of queuing theory(b) Municipal office(d) Health department					
	 (a) Algebraic method (c) Graphical Number of players This department is responsible for the development (a) Railway station (c) Telephone department 	(d) All of the abovet of queuing theory(b) Municipal office(d) Health department					
10.	 (a) Algebraic method (c) Graphical Number of players This department is responsible for the development (a) Railway station (c) Telephone department PART – B (5 x 2= 	(d) All of the abovet of queuing theory(b) Municipal office(d) Health department	CO5- R				
10.11.	 (a) Algebraic method (c) Graphical Number of players This department is responsible for the development (a) Railway station (c) Telephone department PART – B (5 x 2= What do you mean by L.P.P. 	(d) All of the abovet of queuing theory(b) Municipal office(d) Health department10 Marks)	CO5- R				
10.11.12.	 (a) Algebraic method (c) Graphical Number of players This department is responsible for the development (a) Railway station (b) Telephone department (c) Telephone department PART – B (5 x 2= What do you mean by L.P.P. Define the problem of sequencing. 	(d) All of the abovet of queuing theory(b) Municipal office(d) Health department10 Marks)	CO5- R CO1-U CO2-U				

16. (a) Using graphical method, solve the following L.P.P.

CO1- App (16)

Maximize $Z = 2x_1 + 3x_2$

Subject to

$$x_1 - x_2 \le 2$$

$$x_1 + x_2 \ge 4$$
 and $x_1, x_2 \ge 0$.

Or

(b) Use Big – M method to solve

CO1- App (16)

$$Minimize Z = 4x_1 + 3x_2$$

Subject to

$$2x_1 + x_2 \ge 10$$

$$-3x_1 + 2x_2 \le 6$$

$$x_1 + x_2 \ge 6$$

and
$$x_1, x_2 \ge 0$$
.

17. (a) Solve the transportation problem

CO2- App (16)

To

				Supply
1	2	3	4	6
4	3	2	0	8
0	2	2	1	10
1	6	Q	6	-

Demand

Or

(b) A batch of 4 jobs can be assigned to 5 different machines. The set up CO2-App (16) time (in hours) for each job on various machines is given below.

3. 4	r 1		
N/I	[ac]	h1	ne
747	uc		110

1	2	3	4	5
10	11	4	2	8
7	11	10	14	12
5	6	9	12	14
13	15	11	10	7

Job

Find an optimal assignment of jobs to machines which will minimize the total set up time.

18. (a) Consider the details of a distance network as shown in below

CO3 Ana (16)

- (i) Construct a project network
- (ii) Determine the maximal flow from node 0 to 5

AVC (i-j)	Flow				
	fij	fji			
0-1	11	-			
0-2	12	-			
1-3	12	-			
2-1	1	-			
2-4	11	-			
3-4	7	-			
3-5	19	-			
4-5	4	-			

Or

(b) A project has the following time schedule.

CO3- Ana (16)

Activity	Time in month	Activity	Time in month
1 - 2	2	3 – 7	5
1 – 3	2	4 - 6	3
1 - 4	1	5 – 8	1
2 - 5	4	6- 9	5
3 – 6	8	7 – 8	4
		8 – 9	3

Construct PERT network and compute

- (i) Total float for each activity.
- (ii) Critical path and its duration.

Also find the minimum number of cranes the project must have for its activities 2-5, 3-7 and 8-9 without delaying the project. Then, is there any change required in PERT network. If so, indicate the name.

- 19. (a) A factory needs 36000units annually of a component that cost Rs 2 per CO4- App (16) unit. Cost of each order placing is Rs 25 and inventory carrying cost is Rs 10 per year.
 - (i) Find the economic lot size and the total inventory cost.
 - (ii) What is the time between placing of order.
 - (iii) The supplier offers 2% discount if a single order is placed. Should the company accept it.

Or

(b) A machine owner has three machines of purchase price Rs 6000 each CO4 Ana (16) and cost per year of maintaining each machine is same. Two of these machines are two-year-old and the third is one-year-old. He is considering a new machine of purchase price Rs 8000 with 50% more capacity than one of the old ones. The estimates of maintaining cost and resale price for new machine are as given below.

Year	1	2	3	4	5	6	7	8
Maintenance cost(Rs)	1200	1500	1800	2400	3100	4000	5000	6100
Resale price (Rs)	4000	2000	1000	500	300	300	300	300

Assuming that the loss of flexibility due to fewer machines is of no importance, and he continues to have sufficient work for three of the old machines, what should his policy be.

- 20. (a) Sunil Medicals is manned by three salesmen. Any salesman can provide CO5-App (16) desired service to any customers. The customers arrive at the counter according to Poisson distribution at an average rate of 30 per hour. The service time is exponential with a mean rate of 3 min.
 - (i) What fraction of time are all three attendants busy.
 - (ii) What is the mean number of customers waiting to be attended.
 - (iii) What average time does a customer spend at the shop.
 - (iv) What is the probability that a customer has to wait.

Or

(b) (i) Explain the terms in relation to game theory.

CO5-App (16)

- (a) Mixed strategy
- (b) Saddle point
- (c) Dominance
- (ii) Solve the following games.