A
\mathbf{A}
1 A

Reg. No.:						
1105.1						

Question Paper Code:U7707

B.E./B.Tech. DEGREE EXAMINATION, NOV 2024

Professional Elective

Mechanical Engineering

	21MEV707 - MACHINE LEARNIG FOR INTELLIGENT SYSTEMS						
		(Regulation	ns 2021)				
Dura	ation: Three hours			N	faximum: 100) Marks	
		Answer ALL	Questions				
		PART A - (10 x	1 = 10 Marks)				
1.	The best definition of a h	ypothesis in machin	e learning is:			CO1-U	
	(a) Model	(b) Data	(c) Assump	tion	(d) Rules		
2.	Housing prices are predic	cted using:				CO1- U	
	(a) Classification	(b) Regression	(c) Clustering	(d) Rei	inforcement		
3.	Logistic Regression is us	ed for:				CO1- U	
	(a) Continuous outcomes		(b) Binar	(b) Binary classification			
	(c) Clustering		(d) Dime	nsionalit	y reduction		
4.	Linear Discriminant Ana	lysis (LDA) is main	ly used for:			CO1- U	
	(a) Regression		(b) Classification	on			
	(c) Clustering		(d) Data prepro	ocessing			
5.	Naïve Bayes algorithm as	ssumes that features	are:			CO1- U	
	(a) Dependent	(b) Independent	(c) Correlated	1	(d) Continu	ious	
6.	Learning Vector Quantization	ation is primarily us	ed for			CO1- U	
	(a) Classification	(b) Regression	(c) Clustering	.	(d) Feature s	selection	
7.	The Bootstrap method in	volves:				CO1- U	
	(a) Sequential sampling		(b) Random s	ampling	with replacer	nent	
	(c) Stratified sampling		(d) Clustering	3			

8.	Boosting is characterize	zed by:		(
	(a) Parallel training		(b) Sequential training	9
	(c) Reducing bias		(d) Increasing variance	e
9.	The basic unit of a new	ural network is called a		(
	(a) Neuron	(b) Node	(c) Layer	(d) Activation
10.	Convolutional Neural	Networks (CNNs) are b	est suited for	(
	(a) Image recognition		(b) Sequential data an	alysis
	(c) Text processing		(d) Tabular data	
		PART – B (5 x 2	= 10Marks)	
11.	Summarize the bias-va	ariance tradeoff in mach	nine learning.	CO

Explain how regularization helps in preventing over fitting. CO1-U

13. Illustrate how the Naïve Bayes algorithm can be utilized for classifying news CO2 -App articles into categories such as sports, politics, and entertainment.

14. Describe the concept of boosting in ensemble methods. CO1 -U

15. Identify the role of neurons play in an artificial neural network. CO1-U

$$PART - C$$
 (5 x 16= 80Marks)

16. (a) Apply machine learning to real-world examples, focusing on the CO2 -App (16)data types and algorithms used.

Or

- (b) Demonstrate the use of error metrics like accuracy and MSE in CO2 -App (16)model evaluation.
- 17. (a) Using the following Data Set to find B₀, B₁ and predicted Y CO2-App (16)values using Linear Regression Algorithm.

X	2	4	6	5	7
Y	1	3	4	3	5

Or

(b) Apply logistic regression to the given dataset, calculate the CO2-App (16)coefficients, and predict the probability of purchase (Result = 1) for a customer who is 27 years old.

Customer Age (Years)	22	25	28	32	35
Purchased (Result)	0	0	1	1	1

CO1-U

CO1-U

CO1-U

18. (a) A clothing company conducted a survey about the selection of T- CO2 -App (16) shirts, and the survey results are given below. Predict whether a customer will buy or not buy a T-shirt using the Naive Bayes algorithm.

Size	Color	Class
Small	Red	Buy
Medium	Blue	Buy
Large	Red	Not to buy
Small	Red	Buy
Large	Blue	Not to buy
Small	Red	Buy

Or

(b) Apply the K-Nearest Neighbors (KNN) algorithm to predict the CO2 -App (16) Fitness Routine for Emma (Age: 27, Gender: Female).

Person	Years	Sex	Work Type
Adam	24	M	Office
Jane	28	F	Remote
Alex	35	M	Office
Linda	30	F	Hybrid
John	40	M	Remote

19. (a) Determine the Bagged prediction accuracy using Bagged CO3 - App (16) Decision Tree for the following dataset. Use A = 3 and B = 2, 4 as split points.

Feature A	Feature B	Target (T)
3	2	0
2	1	0
4	3	1
1	0	0
6	4	1

Or

(b) The following dataset is given for the people's classification CO3 - App (16) using height and weight. Using Bagged Random Forest Tree algorithm to predict the accuracy of the following split data.

Height (cm)	167 169
Weight (kg)	69

Height (cm)	Weight (kg)	Class
167	51	Under weight
182	62	Normal
176	69	Normal
173	64	Normal
172	65	Normal
174	56	Under weight
169	58	Normal
173	57	Normal
170	55	Normal

20. (a) Execute the training process of a convolutional neural network on CO3 - App (16) a specified dataset, including data preprocessing steps.

Or

(b) Utilize Long Short-Term Memory (LSTM) cells within a CO3-App (16) recurrent neural network to effectively capture long-range dependencies in sequences.