Reg. No.:						
Neg. No.:						

Question Paper Code: U2601

M.E. DEGREE EXAMINATION, NOV 2024

Second Semester

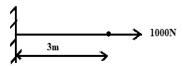
Civil Engineering

21PSE201 - FINITE ELEMENT ANALYSIS FOR STRUCTURAL ENGINEERING

(Regulation 2021)

Duration: Three hours Maximum: 100 Marks

Answer ALL Ouestions


	Answer ALL Questions				
	PART A - $(10 \times 2 = 20 \text{ Marks})$				
1.	What is structural problem?				
2.	2. What is the basic of finite element method?				
3.	Define shape function.				
4.	How do you calculate the size of the global stiffness matrix?.				
5.	Define boundary value problem.				
6.	What is meant by discretization and assemblage?				
7.	How do you calculate the size of the global stiffness matrix?.				
8.	Write down the expression of stiffness matrix for one dimensional bar element.	CO1- U			
9.	What meant by plane stress analysis?				
10.	Define boundary value problem.				
	PART B - $(5 \times 16 = 80 \text{ Marks})$				
11.	(a) A uniform column is hinged at the both ends is subjected to CO3-	-App (16)			

11. (a) A uniform column is hinged at the both ends is subjected to CO3-App (16) compressive load P at both the ends. Find out the critical load using Rayleigh's Ritz method. Take $y = \frac{4 h_x(l-x)}{l^2}$

(b) Explain the general steps of the Finite Element Analysis in detail. CO1-U (16)

12. (a) Derive the equation for natural co-ordinates in two dimension CO1- U (16)

(b) Calculate the nodal displacement for the following cantilever load CO3- App (16) $A = 0.9m^2$, $E = 3 \times 10^{10}$

13. (a) Explain any two applications of thermal analysis by finite element CO1- U (16) method

Or

- (b) Write the step by step procedure of solving a torsion problem by CO1- U (16) finite element method.
- 14. (a) Explain the one dimensional heat conduction equation CO1- U (16)
 Or
 - (b) Explain any two FEM software with its application, capabilities CO1- U and limitations. (16)
- 15. (a) Define shape function and polynomial shape function. CO1- U (16)
 Or
 - (b) Construct a safe function for three nodal axial elements CO3- App (16) $N = a_0 + a_1 r + a_2 r^2$