Reg. No.:						

Question Paper Code: U5410

M.E. DEGREE EXAMINATION, NOV 2024

Professional Elective

Power Electronics and Drives

21PPE510 - WIND ENERGY CONVERSION SYSTEMS

		(Regulations 2021)				
Duration: Three hours Maximum				imum: 100 Marks		
		Answer ALL Questions				
		PART - A $(5 \times 20 = 100 \text{ Marks})$				
1.	(a)	(i) Illustrate the simple momentum theory.	CO1-U	(12)		
		(ii) Explain about Sabinins theory. Or	CO1-U	(08)		
	(b)	Explain the aerodynamics of wind turbine by Blade – element theory analysis.	CO1-U	(20)		
2.	(a)	(i) Define Tip speed ratio. Describe how the Number of blades are selected in Wind Turbines.	CO1-U	(10)		
		(ii) Describe the schemes for maximum power extraction. Or	CO1-U	(10)		
	(b)	(i) Analyze the working of standalone wind diesel hybrid systems.	CO1-U	(10)		
		(ii) Compare Yaw control and Pitch angle control in Wind Turbines.	CO1-U	(10)		
3.	(a)	Derive the Drive Train model for steady state analysis and compare it with the transient stability analysis. Or	CO2-App	(20)		
	(b)	Give the steady – state model of a non-salient pole synchronous machine.	CO2-App	(20)		
4.	(a)	Draw the schematics of DFIG and PMSG. Describe how it is suitable for variable speed systems. Or	CO3-Ana	(20)		
			~~.	/ - - \		

(b) Analyze the operation of Variable Speed Variable Frequency CO3-Ana (20)

(VSVF) in WECS with necessary waveforms.

5. (a) Analyze the Stand-alone WECS system and the issues of Grid CO3-Ana (20) connection.

Or

(b) Analyze the working of Low Voltage Ride Through (LVRT) CO3-Ana (20) control strategy of grid – connected variable speed wind turbine generator system.