Reg. No.:												
-----------	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code:U5406

M.E. DEGREE EXAMINATION, NOV 2024

Professional Elective

Power Electronics and Drives

21PPE506 - MODERN RECTIFIERS AND RESONANT CONVERTERS (Regulations 2021)

(Regulations 2021)									
				imum: 100 Marks					
Answer ALL Questions									
PART - A $(5 \times 20 = 100 \text{ Marks})$									
1.	(a)	Design the capacitor for minimize the THD in rectifiers Or	CO1-U	(20)					
	(b)	Design the rectifier with large capacitor and discuss the behavior in detail.	CO1-U	(20)					
2.	(a)	Construct the Boost rectifier and derive the expression for controller duty cycle.	CO2-U	(20)					
		Or							
	(b)	Construct the Hysteresis control & non linear control methods of rectifiers.	CO2-U	(20)					
3.	(a)	Analyze the Zero current Switching and Zero Voltage Switching? Or	CO3-App	(20)					
	(b)	Analyze the Quasi resonant Boost Converter?	CO3-App	(20)					
4.	(a)	Derive the State Space Averaged model for an ideal Buck Converter and analyze the performance. Or	CO4-App	(20)					
	(b)	Derive the State Space Averaged model for an ideal Boost Converter and analyze the performance.	CO4-App	(20)					
5.	(a)	Explain about Voltage mode PWM Scheme and Current mode PWM Scheme. Or	CO5-Ana	(20)					
	(b)	Explain in detail about Optimal Controller for the source current shaping of PWM rectifiers.	CO5-Ana	(20)					