Reg. No.:						

Question Paper Code: U2904

M.E. DEGREE EXAMINATION, NOV 2024

Professional Elective

Power Electronics and Drives

21PPE504– SOFT COMPUTING TECHNIQUES

		21112301 BOIT COM CITICO TECHNIQUES					
		(Regulations 2021)					
Du	ratior	num: 100 Marks					
		Answer ALL Questions					
		PART - A $(5 \times 20 = 100 \text{ Marks})$					
1.	(a)	(i) What are linearly inseparable problems? How to solve X-OR problem?	CO1- U	(10)			
		(ii) Explain perceptron learning for pattern classification with example.	CO1- U	(10)			
		Or					
	(b)	Implement OR function with binary Input and bipolar target using perceptron training algorithm up to two epochs	CO1- App	(20)			
2.	(a)	With neat architecture, write the training and testing algorithm used in Discrete Hopfield Network. Or	CO2- U	(20)			
	(b)	Explain the architecture of ART1 network. State in detail the computational and supplemental units	CO2- U	(20)			
3.	(a)	Design a fuzzy logic controller for inverted pendulum Or	CO3- U	(20)			
	(b)	Explain in detail about the methods employed for converting fuzzy form into crisp form.	CO3- U	(20)			
4.	(a)	With a neat flow chart explain the operation of ANT colony optimization.	CO4- U	(20)			
Or							
	(b)	Summarize the sequential procedures involved in the cross over	CO4- U	(20)			

and reproduction phase of GA with typical examples.

5. (a) Using MATLAB Neural Network tool box discuss how will you CO5- App (20) identify and control the linear and nonlinear dynamic system

 O_1

(b) Create a neuro and fuzzy controller for its application in inverted CO5- C pendulum system. (20)