Question Paper Code: U5316 M.E. DEGREE EXAMINATION, NOV 2024 Professional Elective Computer Science and Engineering 21PCS516 – ANALYTICAL DATA SCIENCE (Regulations 2021) Duration: Three hours Maximum: 100 Marks Answer ALL Questions PART A - (5 x 20 = 100 Marks) 1. (a) Explain the role of matrix operations in machine learning algorithms. CO1-U How does linear algebra facilitate tasks such as feature extraction and dimensionality reduction? Or (b) Explain the significance of problem formulation in data science. How CO1-U (a) Develop a plan to use a histogram to analyze the distribution of exam CO2- App scores in a classroom. Include steps for data preprocessing, binning, and interpretation of results. Or (b) Apply the concept of PCA to reduce the dimensionality of a dataset CO2- App (or path)
M.E. DEGREE EXAMINATION, NOV 2024 Professional Elective Computer Science and Engineering 21PCS516 – ANALYTICAL DATA SCIENCE (Regulations 2021) Duration: Three hours Maximum: 100 Marks Answer ALL Questions PART A - (5 x 20 = 100 Marks) 1. (a) Explain the role of matrix operations in machine learning algorithms. CO1-U How does linear algebra facilitate tasks such as feature extraction and dimensionality reduction? Or (b) Explain the significance of problem formulation in data science. How CO1-U (a) Develop a plan to use a histogram to analyze the distribution of exam CO2- App (scores in a classroom. Include steps for data preprocessing, binning, and interpretation of results. Or (b) (b) Apply the concept of PCA to reduce the dimensionality of a dataset CO2- App (scores multicle methicle).
Professional Elective Computer Science and Engineering 21PCS516 – ANALYTICAL DATA SCIENCE (Regulations 2021) Duration: Three hours Maximum: 100 Marks Answer ALL Questions PART A - (5 x 20 = 100 Marks) 1. (a) Explain the role of matrix operations in machine learning algorithms. CO1-U How does linear algebra facilitate tasks such as feature extraction and dimensionality reduction? Or (b) Explain the significance of problem formulation in data science. How by CO1-U do defining clear objectives and success criteria contribute to structured problem-solving? 2. (a) Develop a plan to use a histogram to analyze the distribution of exam cO2- App cor (b) Apply the concept of PCA to reduce the dimensionality of a dataset CO2- App (c) Apply the concept of PCA to reduce the dimensionality of a dataset (CO2- App (c) Apply the concept of PCA to reduce the dimensionality of a dataset CO2- App (c) Apply the concept of PCA to reduce the dimensionality of a dataset (CO2- App (c) Apply the concept of PCA to reduce the dimensionality of a dataset (CO2- App (c) Apply the concept of PCA to reduce the dimensionality of a dataset (CO2- App (c) Apply the concept of PCA to reduce the dimensionality of a dataset (CO2- App (c) Apply the concept of PCA to reduce the dimensionality of a dataset (CO2- App (c) Apply the concept of PCA to reduce the dimensionality of a dataset (CO2- App (c) Apply the concept of PCA to reduce the dimensionality of a dataset (CO2- App (c) Apply the concept of PCA to reduce the dimensionality of a dataset (CO2- App (c) Apply the concept of PCA to reduce the dimensionality of a dataset (CO2- App (c) Apply the concept of PCA to reduce the dimensionality of a dataset (CO2- App (c) Apply the concept of PCA to reduce the dimensionality of a dataset (c) Apply the concept of PCA to reduce the dimensionality of a dataset (c) Apply the concept of PCA to reduce the dimensionality of a dataset (c) Apply the concept of PCA to reduce the dimensionality of a dataset (c) Apply the
Computer Science and Engineering 21PCS516 – ANALYTICAL DATA SCIENCE (Regulations 2021) Duration: Three hours Maximum: 100 Marks Answer ALL Questions PART A - (5 x 20 = 100 Marks) 1. (a) Explain the role of matrix operations in machine learning algorithms. CO1-U How does linear algebra facilitate tasks such as feature extraction and dimensionality reduction? Or (b) Explain the significance of problem formulation in data science. How CO1-U do defining clear objectives and success criteria contribute to structured problem-solving? 2. (a) Develop a plan to use a histogram to analyze the distribution of exam scores in a classroom. Include steps for data preprocessing, binning, and interpretation of results. Or (b) Apply the concept of PCA to reduce the dimensionality of a dataset CO2- App (
 21PCS516 – ANALYTICAL DATA SCIENCE (Regulations 2021) Duration: Three hours Maximum: 100 Marks Answer ALL Questions PART A - (5 x 20 = 100 Marks) 1. (a) Explain the role of matrix operations in machine learning algorithms. CO1-U How does linear algebra facilitate tasks such as feature extraction and dimensionality reduction? Or (b) Explain the significance of problem formulation in data science. How CO1-U do defining clear objectives and success criteria contribute to structured problem-solving? 2. (a) Develop a plan to use a histogram to analyze the distribution of exam CO2- App (scores in a classroom. Include steps for data preprocessing, binning, and interpretation of results. Or (b) Apply the concept of PCA to reduce the dimensionality of a dataset CO2- App (scores in a classroom of the concept of pCA to reduce the dimensionality of a dataset CO2- App (scores in a classroom of the concept of pCA to reduce the dimensionality of a dataset CO2- App (scores in a classroom of the concept of PCA to reduce the dimensionality of a dataset CO2- App (scores in a classroom of the concept of PCA to reduce the dimensionality of a dataset CO2- App (scores in a classroom of the concept of PCA to reduce the dimensionality of a dataset CO2- App (scores in a classroom of the concept of PCA to reduce the dimensionality of a dataset CO2- App (scores in a classroom of the concept of PCA to reduce the dimensionality of a dataset CO2- App (scores in a classroom of the concept of PCA to reduce the dimensionality of a dataset CO2- App (scores in a classroom of the concept of PCA to reduce the dimensionality of a dataset CO2- App (scores in a classroom of the concept of PCA to reduce the dimensionality of a dataset CO2- App (scores in a classroom of the concept of PCA to reduce the dimensionality of a dataset CO2- App (scores in a classroom of the concept of PCA to reduce the dimensionality of the dataset co2 co2 co2
(Regulations 2021) Duration: Three hours Maximum: 100 Marks Answer ALL Questions PART A - (5 x 20 = 100 Marks) 1. (a) Explain the role of matrix operations in machine learning algorithms. CO1-U How does linear algebra facilitate tasks such as feature extraction and dimensionality reduction? Or (b) Explain the significance of problem formulation in data science. How by CO1-U do defining clear objectives and success criteria contribute to structured problem-solving? 2. (a) Develop a plan to use a histogram to analyze the distribution of exam scores in a classroom. Include steps for data preprocessing, binning, and interpretation of results. Or (b) Apply the concept of PCA to reduce the dimensionality of a dataset CO2- App (protection multiple forture Demonstrate hore DCA holes in
 Duration: Three hours Maximum: 100 Marks Answer ALL Questions PART A - (5 x 20 = 100 Marks) 1. (a) Explain the role of matrix operations in machine learning algorithms. CO1-U How does linear algebra facilitate tasks such as feature extraction and dimensionality reduction? Or (b) Explain the significance of problem formulation in data science. How CO1-U do defining clear objectives and success criteria contribute to structured problem-solving? 2. (a) Develop a plan to use a histogram to analyze the distribution of exam CO2- App (scores in a classroom. Include steps for data preprocessing, binning, and interpretation of results. Or (b) Apply the concept of PCA to reduce the dimensionality of a dataset CO2- App (scores in a classroom. Include the dimensionality of a dataset CO2- App (scores in a classroom. Include the dimensionality of a dataset CO2- App (scores in a classroom. Include the dimensionality of a dataset CO2- App (scores in a classroom. Include the dimensionality of a dataset CO2- App (scores in a classroom. Include the dimensionality of a dataset CO2- App (scores in a classroom. Include the dimensionality of a dataset CO2- App (scores in a classroom. Include the dimensionality of a dataset CO2- App (scores in a classroom. Include the dimensionality of a dataset CO2- App (scores in a classroom. Include the dimensionality of a dataset CO2- App (scores in a classroom. Include the dimensionality of a dataset CO2- App (scores in a classroom. Include the dimensionality of a dataset CO2- App (scores in a classroom. Include the dimensionality of a dataset CO2- App (scores in a classroom. Include the dimensionality of a dataset CO2- App (scores in a classroom. Include the dimensionality of a dataset CO2- App (scores in a classroom. Include the dimensionality of a dataset CO2- App (scores in a classroom. Include the dimensionality of a dataset CO2- App (scores in a classroom. Include the dimensionality of a dataset CO2- App (scores in a classroom.
Answer ALL Questions PART A - (5 x 20 = 100 Marks) 1. (a) Explain the role of matrix operations in machine learning algorithms. CO1-U (How does linear algebra facilitate tasks such as feature extraction and dimensionality reduction? Or (b) Explain the significance of problem formulation in data science. How CO1-U (do defining clear objectives and success criteria contribute to structured problem-solving? 2. (a) Develop a plan to use a histogram to analyze the distribution of exam CO2- App (scores in a classroom. Include steps for data preprocessing, binning, and interpretation of results. Or (b) Apply the concept of PCA to reduce the dimensionality of a dataset CO2- App (
 PART A - (5 x 20 = 100 Marks) 1. (a) Explain the role of matrix operations in machine learning algorithms. CO1-U (How does linear algebra facilitate tasks such as feature extraction and dimensionality reduction? Or (b) Explain the significance of problem formulation in data science. How CO1-U (do defining clear objectives and success criteria contribute to structured problem-solving? 2. (a) Develop a plan to use a histogram to analyze the distribution of exam CO2- App (scores in a classroom. Include steps for data preprocessing, binning, and interpretation of results. Or (b) Apply the concept of PCA to reduce the dimensionality of a dataset CO2- App (scores in a matrix) of the presentation of
 (a) Explain the role of matrix operations in machine learning algorithms. CO1-U (How does linear algebra facilitate tasks such as feature extraction and dimensionality reduction? Or (b) Explain the significance of problem formulation in data science. How CO1-U (do defining clear objectives and success criteria contribute to structured problem-solving? (a) Develop a plan to use a histogram to analyze the distribution of exam CO2- App (scores in a classroom. Include steps for data preprocessing, binning, and interpretation of results. Or (b) Apply the concept of PCA to reduce the dimensionality of a dataset CO2- App (scores in a classroom. Demonstrate here, DCA, here, in
 (b) Explain the significance of problem formulation in data science. How CO1-U (do defining clear objectives and success criteria contribute to structured problem-solving? 2. (a) Develop a plan to use a histogram to analyze the distribution of exam CO2- App (scores in a classroom. Include steps for data preprocessing, binning, and interpretation of results. Or (b) Apply the concept of PCA to reduce the dimensionality of a dataset CO2- App (scores in a classroom. Include steps for data preprocessing, binning, and interpretation of results.
 (a) Develop a plan to use a histogram to analyze the distribution of exam CO2- App (scores in a classroom. Include steps for data preprocessing, binning, and interpretation of results. Or (b) Apply the concept of PCA to reduce the dimensionality of a dataset CO2- App (scores in a classer preprocessing in a classer preprocesing in a classer preprocessing in a classer preprocessing in a
(b) Apply the concept of PCA to reduce the dimensionality of a dataset CO2- App (
preserving important information while reducing noise and redundancy.
3. (a) The features in a data set are as given below. Find the dimensionality CO2-App (of the data set. $\begin{bmatrix} 2 & 1 & -1 \\ 4 & -1 & 5 \\ -2 & 3 & 4 \end{bmatrix}$
Or

(b) Find all the distance measures for the points (1,2,3,4,5) and CO2-App (20) (5,6,7,8,9).

4. (a) (i) How do we overcome data discovery challenges? CO2- App (20) (ii) Discuss data discovery use cases.

Or

- (b) (i) Sort a list of numbers in ascending order using Python
 (ii) Write a python program to convert marks obtained into grade.
 (20)
- 5. (a)

IN T	15	23	18	23	24	22	22	19	19	16	24	11	24	16	23	CO2- App	(20)
EX T	49	63	58	60	58	61	60	63	60	52	62	30	59	49	68		

Apply k means clustering to the above data set

(b) Explain in detail about data pre-processing and preparation with CO2- App (20) python code.