		Question Pap	per Code:U3M2	2	
		B.E./B.Tech. DEGREE EX	XAMINATION, NO	V 2024	
		Third S	Semester		
		Computer Science	ce and Engineering		
	21UM	A322-Probability, Queueii	ng Theory and Nume	rical Methods	
		(Regulat	tions2021)		
		(Common to Infor	mation Technology)		
Dur	ation: Three hours	S		Maximum: 1	00 Marks
		Answer A	ll Questions		
		PART A - (10	0x 1 = 10Marks		
1.	If A and B are i	ndependent events then P($A \cap B) =$		CO6- U
	(a) 0	(b) P (A). P(B)	(c) P(A) + P(B)	(d) P(A) -	- P(B)
2.	If A and B are m	nutually exclusive events the	hen $P(A \cup B) =$		CO6- U
	(a) 0	(b P(A) - P(B)	(c) P (A). P(B)	(d) P (A)	+ P(B)
3.	The relation bety	ween $L_s \& L_q$ is			CO6- U
	(a) $L_s = \lambda L_q$	(b) $L_q = \lambda L_s$	(c) $L_q = L_s + \frac{\lambda}{\mu}$	(d) $L_S = L_C$	$q + \frac{\lambda}{\mu}$
4.	For a model (M/is 4 per hour the	$(M/1)$: (∞ /FCFS)The arriven W_S	al rate is 3 per hour	and service rate	CO2- App
	(a) 55 Minutes	(b) 65 Minutes	(a) 55 Minutes	(b) 65 Min	nutes
5.	In method of mo	oments ,the first moment is	denoted by		CO6- U
	(a) $\Delta y \Sigma x$	(b) $\Delta x \Sigma y \Delta x$	(c) $\Delta x \Sigma x y$	(d) $\Delta y \Sigma xy$	
6.	number method of least s	of normal equations are squares	required to fit a s	straight line in	CO6- U
	(a) 1	(b) 2	(a) 1	(b) 2	
7.	Order of converg	gence of iteration method i	is		CO6- U
	(a) 1	(b) 2	(a) 3	(b) 0	

Reg. No:

8.	Itera	ation method c	onver	$ges if g^1(x) $)					CO6- U
	(a) >	>1	((b) <1		(c)	=0		(d) > 0	
9.	In E	uler's method	, if h i	s small, the	e metho	d is too		_		CO6- U
	(a) f	ast		(b) slow		(0	e) avera	.ge	(d) None of	these
10.	Pred	lictor-Correcto	or met	hods are _		_ starting	g metho	ods		CO6- U
	(a) s	elf	((b) not self		(c)	identit	y (d) Nor	ne of the abo	ve
	` /			. ,		$5 \times 2 = 10$	•	` ` `		
11.	For	Binomial distr	ibutio		•			•	1. C	O1- App
12.		at do you mear					.s - , -	impute I [II /i		O2- App
13.		·	·				r			
13.	Wri	te down the No	ormal	Equations	of the o	curve y	$=ab^{x}$		C	O3- App
14.	Wri	te the iterative	form	ula for find	ling \sqrt{a}	•				CO6- U
15.	Wri	te down the A	dam's	predictor a	and corr	ector for	rmula.			CO6- U
				PA	RT – C	(5 x 16=	= 80Ma	rks)		
16.	(a)	(i) Obtain the	e Corr	elation coe	efficient	for the	follow	ing heights (in	CO1-App	(8)
		inches) of fat								
		X	65	66 67	67	68	69	70 72		
		Y (ii) The num	67	68 65	68	72	72	69 71 outer is a R.V.	CO1 Ann	(9)
				•			•	1.8. Find the		(8)
		Probability					•			
		•		_				wn (c) With a	t	
		least one brea	akdow	'n						
					Or					
	(b)	` '		C				e defective. A		(8)
			_				_	ion. Find the hree defective		
		bulbs.	iai (1	i) all ale go	Jou Dui	08 (11) 62	xactry t	ince defective	,	
			$\int k$	20 < 11	< 00				CO1 -Ana	(8)
		(ii) If $f(x)$ =	$= \left\{ \frac{1}{1+2} \right\}$	$\frac{1}{x^2}$, $-\infty < x$	< 00	is the	Proba	bility Density	7	
		Function of	a Rano	dom variat	ole X,					
		(i) Find K								

(ii) distribution function of F(x)

- 17. (a) A petrol pump station has 4 pumps. The service times follow the CO2 -Ana exponential distribution with a mean of 6 minutes and cars arrive for service in a Poisson process at the rate of 30 cars per hour.
 - (i) What is the Probability that an arrival would have to wait in line?
 - (ii) Find the average number of cars in the system and in the queue?
 - (iii) Find the average waiting time of a customer in the system and in the queue?
 - (iv) Find the idle of a pump station?

Or

- (b) (i) A T.V. repairman finds that the time spent on his job has an CO2 -Ana exponential distribution with 30 minutes. The repair sets in the order in which they come, which follow Poisson arrival pattern with average rate of 10 per 8 hour day., Identify the queuing model,
 - (a) What is the repairman's expected idle time each day?
 - (b) How many jobs are ahead of an average set brought in?
 - (c) What is the average queue length?
 - (ii) The one person barber shop can accommodate a maximum of 5 people at a time (4 waiting and 1 getting haircut, Customers arrive according to a Poisson distribution with mean 5 per hour. The barber cuts hair at an average rate of 4 per hour. (i) What percentage of time is the barber idle? (ii) What fraction of the potential customers are turned away? (iii) What is the expected number of customers waiting for a haircut?
- 18. (a) (i) Applying least square method techniques fit a straight line CO3-App y = ax + b (8)

X	5	10	15	20	25
Y	16	19	23	26	30

(ii) Applying method of moments fit a straight line y = ax + b CO3- App

X	1	2	3	4
Y	0.30	0.64	1.32	5.40

Or

(16)

(8)

(8)

(b) (i) Applying method of moments fit a straight line y = ax + b CO3- App (8)

X	1	2	3	4
Y	1.7	1.8	2.3	3.2

(ii) Applying least square method techniques fit the curve $y = ab^x$ CO3-App with the following data:

X	0	1	2	3	4
Y	1	1.8	3.3	4.5	6.3

19. (a) (i) Solve the equation $3x - \cos x - 1 = 0$ by Newton Raphson CO4-App (8) method correct to 4 decimal places.

(ii) Solve
$$27x + 6y - z = 85$$
, $6x + 15y + 2z = 72$, $x + y + 54z = 110$ CO4-App (8) by Gauss Seidel Method

Or

(b) (i) Using Power method find numerically largest Eigen value of CO4 -App (8) $\begin{pmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{pmatrix}$

(ii) Solve the system of equations by Gauss Elimination methods CO4 -App x+3y+3z=16, x+4y+3z=18, x+3y+4z=19 (8)

20. (a) (i) Using Taylor's series method find y(1.1) given y' = x + y CO5- App with y(1) = 0

(ii) Solve
$$\frac{dy}{dx} = y - x^2$$
 with y(0) = 1, at x = 0.2, $x = 0.4$ by CO5- App (8)

Euler's method

Or

(b) Given $\frac{dy}{dx} = x^3 + y$, y(0) = 2, y(0.2) = 2.443, y(0.4) = 2.99, CO5- App y(0.6) = 3.68, Compute y(0.8) by Milne's Predictor & Corrector method