Reg.No :											
----------	--	--	--	--	--	--	--	--	--	--	--

B.E./B.Tech. DEGREE EXAMINATION, NOV 2024

Third Semester

Computer Science and Engineering

19UMA322-Probability, Queueing Theory and Numerical Methods

(Regulation 2019)

(Common to Information Technology)

Duration: Three hours

(a)

Maximum: 100 Marks

Answer All Questions

PART A - (10x 1 = 10Marks)

1. If X is the discrete random variable having the probability mass function, CO1- App then K value is .

	X	1	2	5	
	P(X)	9k ²	$k^2 + 2k$	k	
)1/5	(b)	-1/5	(a)1/:	5	(b) -1/5

- 2. A Continuous r.v has a p.d.f $f(x) = 3x^2$, $0 \le x \le 1$, If P(X > b) = 0.05, then value of b CO1- App is
 - (a) 0.9308 (b) 0.9803 (c) 0.9830 (d) 0.9038
- 3. The relation between $L_s \& L_q$ is

(a)
$$L_s = \lambda L_q$$
 (b) $L_q = \lambda L_s$ (c) $L_q = L_s + \frac{\lambda}{\mu}$ (d) $L_s = L_q + \frac{\lambda}{\mu}$

- 4. For a model (M/M/1): (∞ /FCFS)The arrival rate is 3 per hour and service rate CO2- App is 4 per hour then W_s
 - (a) 55 Minutes (b) 65 Minutes (a) 55 Minutes (b) 65 Minutes
- 5. In method of moments ,the first moment is denoted by CO6- U (a) $\Sigma x \Delta y$ (b) $\Sigma y \Delta x$ (a) $\Sigma x \Delta y$ (b) $\Sigma y \Delta x$

CO6- U

6.	num method of lea	ber of normal equations a ast squares	are required to fit a stra	hight line in CO6- U
	(a) 1	(b) 2	(a) 1	(b) 2
7.		natrix, 5, 10 are the Eiger nt Eigen value	n values, trace of matrix i	s equal to 3 CO6- U
	(a) 12	(b) -12	(a) 12	(b) -12
8.	Iteration met	hod converges if $ g^1(x) $		CO6- U
	(a) >1	(b)<1	(a) >1	(b)<1
9.	In Euler's me	ethod, if h is small, the method	hod is too	CO6- U
	(a) fast	(b)slow	(a) fast	(b)slow
10.	prior v	values are required to predi-	ct the next value in Milne'	s method CO6- U
	(a) 1	(b)2	(a) 1	(b)2
		PART – B	(5 x 2= 10Marks)	
11.	A coin is to atleastonehea	ossed thrice; Compute the	e probability that there	will appear CO1- App
12.	Explain Kend	dall's Notation (a/b/c): (d/e	e) of a queueing model	CO6- U
13.	Write down t	he Normal Equations of the	e curve $y = ae^{bx}$	CO6- U
14.	Write the cor	ndition of convergence of N	lewton's method	CO6- U
15.	Write down t	he Milne's predictor and co	prrector formula.	CO5 U
		PART –	C (5 x 16= 80Marks)	
16.		ne density function of a con	tinuous r.v X is given by	CO1-Ana (8)
		$ax \qquad 0 \le x \le 1$ $a \qquad 1 \le x \le 2$ $3a - ax \qquad 2 \le x \le 3$		
	$f(x) = \begin{cases} \\ \\ \end{cases}$	$a \qquad 1 \le x \le 2$		
		$3a - ax$ $2 \le x \le 3$		

(a). Compute the value of "a" (b). Compute the c.d.f of X

(ii) Using the p.df of an exponential distribution, State and prove CO1-Ana (8) memoryless property

Or

CO1 - Ana (8)

(b) (i) A RV X has the following distribution

X	0	1	2	3	4	5	6	7	8
P(X)	а	3a	5a	7a	9a	11a	13a	15a	17a
P[1 < X < 5 / X > 3]									

i) Compute $P(X \ge 4)$ and P[1 < X < 5 / X > 3]

ii) Compute E(X)

(ii) Calculate the Correlation coefficient for the following data CO1 -Ana

							25	
Y	11 0	12 0	124	130	136	122	140	143

17. (a) (i) Customers arrive at a watch repair shop according to a Poisson CO2 -Ana (8) process at a rate of 10 per every an hour, and the service time is an exponential random variable with mean 4 minutes. i) Compute the average number of customers in the shop L_s ii) Compute the average time a customer spends in the shop W_s iii) Compute the average number of customers in the queue L_q iv) What is the probability that the server is idle

(ii) Patients arrive at a clinic according to Poisson distribution at a CO2 -Ana (8) rate of 32 patients per hour. The waiting room does not accommodate more than 15 patients. Examination time per patient is exponential with mean rate of 20 per hour. Identify the Model , Compute i) the effective arrival rate at the clinic. ii)the probability that an arriving patient will not wait? iii) the expected waiting time until a patient is discharged from the clinic?

Or

(b) A petrol pump station has 4 pumps. The service times follow the CO2 -Ana (16) exponential distribution with a mean of 6 minutes and cars arrive for service in a Poisson process at the rate of 30 cars per hour. Identify the Model, Compute the following i) the Probability that an arrival would have to wait in line? ii) the average waiting time, average time spent in the system and the average number of cars in the system iii) For what percentage of time would a pump be idle on an average?

CO1 - Ana (8)

18. (a) (i) Applying least square method techniques fit a straight line CO3- App (8) y=a+bx

Х	0	3	5	6	8	10	12
Y	2	5	8	9	11	12	15

(ii) Applying group average method fit a second degree parabola CO3- App (8) $y = a + bx + cx^2$ for the following data

Х	1	2	3	4	5			
Y	5	12	26	60	97			
Or								

(b) (i) Applying method of moments fit a straight line y = ax + b CO3- App (8)

Х	1	3	5	7
Y	4	8.5	11.5	15

(ii) Applying least square method techniques fit the curve $y = ab^x$ CO3-App (8) with the following data:

X	1	2	3	4	5
Y	150	99	60	48	18

19. (a) (i) Compute the real positive root of $x \log_{10} x = 4.5$ by Newton's CO4-App (8) Raphson Method. Correct to 3 decimal places

(ii) Applying Power method compute numerically largest Eigen CO4-App (8)

value of $\begin{pmatrix} 9 & 10 & 8 \\ 10 & 5 & -1 \\ 8 & -1 & 3 \end{pmatrix}$ by taking $X_0 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

Or

(b) (i) Using Gauss Seidel method, Solve 28x+4y-z = 32: x+3y+10z = CO4 -App (8) 24;

2x+17y+4z = 35

(ii) Compute the real positive root of $3x - \cos x = 1$ by Iterative CO4 - App (8) method

20. (a) (i) Using R.K Method of 4th order, solve $\frac{dy}{dx} = \frac{y}{1+x^2}$ with y (0) CO5- App (8) = 1, Compute y (0.1) by taking h=0.1

(ii) Given $\frac{dy}{dx} = y + 2x$ with y (0) = 1, Compute y approximately CO5- App (8) for x=0.5 by Euler's method in five steps

Or

(b) Given $\frac{dy}{dx} = x^3 + y$, y(0) = 2, y(0.2) = 2.443, y(0.4) = 2.99, CO5-App (16)

y(0.6) = 3.68 Compute y(0.8) by Milne's Predictor & Corrector method