		Reg. No. :										
Question Paper Code:U2M03												
B.E./B.Tech. DEGREE EXAMINATION, NOV 2024												
Second Semester												
Computer Science and Engineering												
21UMA203- Differential Equations and Complex analysis												
(Regulations 2021)												
(Common to information technology)												
Dura	Duration: Three hours							Maximum: 100 Marks				
Answer ALL Questions												
PART A - $(10 \text{ x } 1 = 10 \text{ Marks})$												
1.	$\frac{1}{(D-m)^2}e^{mx} = -$									CC	1-Ap)
	(a)) <i>xe^{mx}</i>	(b)x² <i>e^{mx}</i>			($c)\frac{x^2}{2}$	e ^{m x}		(0	d) $\frac{\mathbf{x}^2}{m}$	m x	
2.	The complementary function of $(4D^2 - 3D - 1)y=2 \sin 2x$ is CO6-U								J			
	(a)Ae ^x + Be ^{-$\frac{x}{4}$}	(b) $Ae^{-x}+Be^{5x}$ (c) $(A+Bx)e^{2x}$					$(d)Ae^{x}+Be^{4x}$					
3.	Div_{r} =									CO2	2-App	
	(a) 0	(b) 1		(c)3					(d) \overline{r}			
4.	Divergence of vector $x^2 i + y^2 j + z^2 k$ at (1, 2, -3) is									CC	2-Apj)
	(a) 8	(b) 4		(c)-3					(d) 0			
5.	The critical point of the transformation $w = z + \frac{1}{z}$ are								CC	3-Арј)	
	a) ±1	b) ±2		c) ±i	Į.			d) – <i>i</i>				
6.	The function $f(z) =$	The function $f(z) = \frac{1}{z^2+4}$ is not analytic at $z = $								CC	3-Арј)
	(a) 2	b) -2		c)2i				d) <mark>±2i</mark>				
7.	Simple pole is a pol	nple pole is a pole of order						(CO6-l	J		
	(a) 1	(b) 4		(c) 3				(d)	-4			

8.	$\int_{C} \frac{e^{z}}{z-2} dz$ where C is the unit circle with centre as origin is										
	(a)	0	(d) 1	(c) 2	(d) п						
9.	The	PDE obtained f	from $z = (x+a)(y+b)$	is	CO5-App						
	(a) 3	Bz = px + qy	(d) px+qy	d) $px+qy = 0$							
10.	The	subsidiary equa	ations of Lagrange	's linear equation is	CO5-U						
	(a) -	$\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R}$	(b) $\frac{dx}{P} + \frac{dy}{Q} + \frac{dz}{R}$	$(\mathbf{c})\frac{dx}{P} - \frac{dy}{Q} - \frac{dz}{R}$	(d) Pp +Q	p +Qq= R					
PART - B (5 x 2= 10 Marks)											
11.	Fine	d the Wronskiar		CO1-App							
12.	Compute $\nabla \varphi$, if $\varphi = x^2 + y^2 + z^2$ at (1, -1, 1).						CO2-App				
13.	Prove that $u = e^x \cos y$ is harmonic function						CO3-App				
14.	Using Cauchy's integral formula, Evaluate $\int_{c} \frac{z}{z-2} dz$ where C is $ z = 1$ CO4-App										
15.	Fine	d the particular		CO5-App							
16.	(a)	(i) Solve $(D^2 + 2D + 2)y = e^{-2x} + \cos 2x$		CO1-A	рр	(8)					
		(ii) Using method of variation of parameters solve $(D^2 + a^2)y = Cosec ax$				CO1- App (
	Or										
	(b)	(i) Solve $(x^2D^2 -$	CO1- A	Арр	(8)						
			n it and at time $t = 4$	exponentially. At time t=0 it has 2000. At what time	it CO1-A	Арр	(8)				
17.	(a)	(a) Verify Green's theorem in the XY plane for $\int_C (3x^2 - 8y^2 dx + 4y - 6xy dy)$ where C is the boundary of the region defined by $= y^2$, $y = x^2$.				рр	(16)				

U2M03

(b) Verify Gauss divergence theorem for the vector function $\vec{F} = CO2$ -App (16) $4xz\vec{i} - y^2\vec{j} + yz\vec{k}$ over the cube bounded by x = 0, y = 0, z = 00 and x = 1, y = 1, z = 1

Or

18. (a) (i) Determine the analytic function whose real part is CO3-App (8)

$$\frac{\sin 2x}{\cosh 2y - \cos 2x}$$
(ii) Determine the image of $|z - 2i| = 2$ under the transformation CO3-App (8)
 $w = \frac{1}{z}$
Or

(b) (i) If f(z)=u+iv is an analytic function then Prove that CO3-App (8) $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4 |f^1(z)|^2$ (ii) Determine the bilinear transformation which many z = 1 i. 1. CO3 App (8)

(ii) Determine the bilinear transformation which maps z = 1,i,-1 CO3-App (8) respectively onto w = i,0,-i

19. (a) (i) Using Cauchy's integral formula , Evaluate $\int_{c} \frac{z+1}{(z-3)(z-1)} dz$ CO4-App (8) where C is the circle |z| = 2(ii) Evaluate $f(z) = \frac{7z-2}{z-2}$ in Laurent's series valid in the CO4-App (8)

(ii) Evaluate
$$f(z) = \frac{7z - 2}{z(z+1)(z-2)}$$
 in Laurent's series valid in the CO4-App (8)
region $1 < |z+1| < 3$

Or

Or

(b) Using Contour integration Prove that CO4-App (16) $\int_{-\infty}^{\infty} \frac{x^2}{(x^2 + a^2)(x^2 + b^2)} dx = \frac{\pi}{a + b} a > b > 0$

20. (a) (i) Solve :
$$(D^2 - 3DD' + 2D'^2)Z = e^{3x-2y} + Sin(3x + 2y)$$
 CO5-App (8)
(ii) Solve : $x(y-z)p + y(z-x)q = z(x-y)$ CO5- App (8)

(b) A tightly String with fixed end points x=0 and x=*i* is initially at CO5- App (16) rest in its equilibrium position. If its set vibrating giving each point at velocity λ(*i*x-x²). Determine the displacement function y(x,t).

U2M03