		Reg. No:											
Question Paper Code: U4M21													
B.E./B.Tech. DEGREE EXAMINATION, NOV 2024													
Fourth Semester													
Computer Science and Engineering													
21UMA421 - TRANSFORMS AND DISCRETE MATHEMATICS													
(Common to Information Technology & CSE(AIML))													
(Regulations 2021)													
Duration: Three hours Maximum: 100 Marks													
Answer All Questions													
PART A - (10 x 1 = 10 Marks)													
1.	$\neg P \rightarrow Q$ is equivalent to?								CO1- U				
	(a) $\neg P \land Q$	(b) $P \wedge \neg Q$		(c) ¬(<i>F</i>	$P \wedge Q$)			(d	$P \vee$	Q			
2.	P: Rahim is Rich, Q: Rahim is happy. Then 'Rahim is poor but happy' Is CO1- U best represented by?												
	$(a) \neg P \lor \neg Q$	(b) $P \land \neg Q$		$(c) P \land c$	Q			(d	-P	$\wedge Q$			
3.	$8^n - 3^n$ is divisible l	ру								(CO2- U		
	(a) 8	(b) 3		(c) 24				(d	(d) 5				
4.	The numbers between 1 and 100, including both, are divisible by 2 or 6 is CO2-								02- App				
	(a) 50	(b) 16		(c) 66				(d	(d) 34				
5.	A group (M,*) is sai	d to be abelian if							CO3- U				
	(a) (x+y)=(y+x)	+y)=(y+x) (b)(x*y)=(y*x)			(c)(x+y)=x				(d) $(y^*x)=(x+y)$				
6.	The union of two su	nion of two subgroup of G is a						(CO6- U				
	(a) Subgroup	(b) Semigrou	р	(c) grou	ıp			(d	(d) Monoid				
7.	Fourier transform o	$f\sqrt{2\pi}, -1 < x < 1$							CO4- App				
	(a) $\frac{\cos s}{s}$	(b) $\sqrt{2\pi} \frac{\cos s}{s}$		(c) $\sqrt{2\pi}$	$\frac{\sin s}{s}$			(d	(d) $\frac{2\sin s}{s}$				

8.	A function is called self-reciprocal under Fo	CO6- U										
	(a) It is reciprocal to itself	(b) Its Fourier transform is th	he same function									
	(c) Its Fourier transform is its reciprocal	(d) None of the above										
9.	The Z^{-1} transform of is $\frac{z}{(z-4)^2}$		CO5 - U									
	(a) 4^n (b) $(-4)^n$	(c) $n(-4)^{n-1}$ (d)	$n(4)^{n-1}$									
10.	The Z-transform of $n3^n$		CO6 - U									
	(a) $\frac{z}{(z-3)^2}$ (b) $\frac{z}{(z+3)^2}$	(c) $\frac{3z}{(z-3)^2}$	(d) $\frac{3z}{(z+3)^2}$									
	PART – B (5 x 2= 10 Marks)											
11.	Write Demorgan's law?	CO1 App										
12.	In how many ways can letters of the word "I	l? CO2-App										
13.	Define Abelian Group and give an example	CO3-U										
14.	Find the Fourier cosine transform of e^{-ax} , $a > 0$	CO2-App										
15.	State convolution property of Z – transform.	CO5-U										
	PART – C ((5 x 16= 80 Marks)										
16.	(a) (i) Prove the following $(x)(P(x)\vee Q(x)) \Rightarrow (x)P(x)\vee (\exists x)Q(x)$		CO1-App (8)									
	(ii) Using the rules $P \rightarrow Q, (\neg Q \lor R), \neg R, \neg (\neg P \land S) \Rightarrow \neg S$	of inference derive	CO1-App (8)									
	Or											
	(b) (i) Prove the following by Indirect Met $P \rightarrow Q, Q \rightarrow R, \neg (P \land R), P \lor R \Rightarrow R$	CO1-App (8)										
	(ii) Prove the following by Indirect met $(x)(P(x)\lor Q(x)) \Rightarrow (x)P(x)\lor (\exists x)Q(x)$		CO1-App (8)									
17.	(a) (i) Using mathematical induction prov $(a-b)$.	e that $(a^n - b^n)$ is divisible by	CO2- App (8)									

(*a*-*b*). (ii) Solve: $a_{n+2} + 3a_{n+1} + 2a_n = 3^n, a_0 = 0, a_1 = 1$ CO2- App (8)

U4M21

- (b) (i) Using generating functions Solve:CO2- App(8) $a_n 7a_{n-1} + 10a_{n-2} = 0, a_0 = 10, a_1 = 41.$ (ii) Calculate the number of positive integers not exceeding 250CO2- App(8)that are divisible by 2, 3, 5 or by 7.(8)
- 18. (a) $S = Q \times Q$, such that binary operation defined by CO3- U (16) (a,b)*(x,y)=(ax,ay+b)
 - (i) Prove that (S, *) is a semi group
 - (ii) Is it commutative?
 - (iii) Find the identity element of S?
 - (iv) Find Inverse element of S?

Or

- (b) (i) The necessary and sufficient condition for a non-empty subset H CO3- U (8) of a group (G,*) to be a subgroup is $a, b \in H \Rightarrow a * b^{-1} \in H$.
 - (ii) The binary operation * is defined on Q⁺ such that CO3-U (8) $a*b = \frac{ab}{5}, a, b \in Q^+$, Show that (Q⁺,*) is an abelian Group.

19. (a) Compute the Fourier Transform of $f(x) = \begin{cases} a - |x| & \text{if } |x| \le a \\ 0 & \text{if } |x| > a \end{cases} \text{ and hence evaluate}$ (i) $\int_{0}^{\infty} \left(\frac{\sin x}{x}\right)^{4} dx$ (ii) $\int_{0}^{\infty} \left(\frac{\sin x}{x}\right)^{2} dx$ Or (b) Evaluate $CO4- \text{ App} \quad (16)$

(i)
$$\int_{0}^{\infty} \frac{dx}{(x^2+16)(x^2+36)}$$
 (ii)
$$\int_{0}^{\infty} \frac{x^2 dx}{(x^2+49)^2}$$
 using Fourier transform

20. (a) (i) Solve the difference equation $y_{n+2} + 4y_{n+1} + 3y_n = 3^n$ given that CO5- App (8) $y_0 = 0, y_1 = 1$

(ii) Find the Z transform of
$$\left(\frac{1}{(n+1)(n+2)}\right)$$
 CO5- App (8)

U4M21

Or