
A		Reg. No. :												
		Question 3	Pape	er C	ode	: R 2	133()						
B.E. / B.Tech. DEGREE EXAMINATION, NOV 2024														
First Semester														
		CSH	E (Cył	ber S	ecuri	ty)								
R2	LIUEE130- FUNDAM	ENTALS OF E	LECI	RIC	CAL A	AND	ELE	ЕСТ	RON	ICS	ENC	GINE	EERI	NG
		(Re	egulat	ions	R202	21)								
		(Commo	n to C	CSE ((IoT)	brar	nch)							
Duration: Three hours Maximum: 100 Mark								ks						
		Ans	wer A	.11 Q	uesti	ons								
		PART A	(10	x 1	= 10	Mar	ks)							
1.	. The number of cycles per second for an AC quantity is called								CC) 1-U				
	(a) RMS value	(b) Time Peri	od	(c) Fr	eque	ncy			((d) P	ower	fact	or
2.	What is the average v	value of an AC v	wavef	orm	over	a co	mple	te c	ycle?)			CC) 1-U
	(a) Zero	(b) Peak valu	e	()	(c) RMS value (d) Peak-to-peak va						lue			
3.	Which type of DC motor is suitable for constant-speed applications? CO2-U													
	(a) Series motor	(b) Shunt mo	tor	(c) Co	ompo	ound	mot	or	((d) S	teppe	er mo	otor
4.	What is the working principle of a DC motor?							CO	D2- U					
	(a) Conversion of electrical energy to mechanical energy													
	(b) Conversion of mechanical energy to electrical energy													
(c) Conversion of thermal energy to electrical energy														
(d) Conversion of chemical energy to mechanical energy														
5.	In electronic circuits, a Bipolar Junction Transistor (BJT) is commonly used for: CO3-U													
	(a) Signal amplification			((b) Voltage regulation									
(c) Switching power on and off (d)							(d) Converting AC to DC							

6.	In a Junction Field-Effect Transistor (JFET), how is the conduction controlled?									
	(a) By a magnetic field			(b) By the movement of charge carriers						
	(c) By varying the gate-source voltage			(d) By						
7.	What is the operating principle of a moving coil meter?							CO4-U		
	(a) Magnetic induction (b) Piezoelectric effect					ffect				
	(c) Photoelectric effect				(d) Electrostatic discharge					
8.	Moving Coil and instruments?	Moving Iron	meters	belong	to	which	category of	CO4-U		
	(a) Digital instruments				(b) Analog instruments					
	(c) Optical instruments				(d) Mechanical instruments					
9.	Calculate the resistance of a 100 W, 200 V lamp							CO1-U		
	(a) 100 ohm	(b) 200 ohn	ı	(c) 400 ohm (d) 160				0 ohm		
10.	A capacitor carries a charge of 0.1 C at 5 V. Its capacitance is						CO1-U			
	(a) 0.02 F	(b) 0.5 F		(c) 0.0	5 F		(d) 0.2 F			
PART - B (5 x 2= 10 Marks)										
11.	State Ohm's Law and its mathematical representation							CO1-U		
12.	How do DC Self-excited Generators work?							CO1-U		
13.	What distinguishes a Zener diode from a regular diode?							CO1-U		
14.	How is data acquired in a Digital Storage Oscilloscope (DSO)?							CO1-U		
15.	Define charge and its type						CO1-U			
PART – C (5 x 16= 80Marks)										

Determine the power dissipation in the 4 Ω resistor of the circuit $\ \mbox{CO2-App}$ 16. (a) (16) shown in Fig.

2

- (b) A series combination of 10Ω resistance and 50mH inductance is CO2-App (16) connected to a 220V, 50 Hz supply. Estimate the current, active power, reactive power and apparent power. Also estimate the voltage across R and L and draw the phasor diagram.
- 17. (a) Derive the EMF equation for DC generators. Explain the CO1-U (16) significance of each term in the equation and how it relates to the generator's performance.

Or

- (b) Break down the construction of the windings in a transformer. How CO1-U (16) are the primary and secondary windings arranged, and what materials are commonly used?
- 18. (a) Explain the working principle of a Junction Field-Effect Transistor CO1-U (16) (JFET). Discuss its characteristics and applications in electronic circuits.

Or

- (b) Explain the operating principle of a PN junction diode. Discuss the CO1-U (16) formation of the depletion region and how the diode behaves under forward and reverse bias.
- 19. (a) Draw and explain the main parts of a Digital Storage Oscilloscope CO1-U (16) (DSO). How do these parts work together?

Or

- (b) What is data acquisition in a Digital Storage Oscilloscope? Explain CO1-U (16) how signals are collected and stored digitally.
- 20. (a) Derive the RMS value and Average value of sinusoidal waveform CO2-App (16) and find the form factor and peak factor

Or

(b) A series combination of 12Ω resistance and 600 µF capacitance is CO2-App (16) connected to a 220V, 50 Hz supply. Estimate the current, active power, reactive power and apparent power. Also estimate the voltage across R and C and draw the phasor diagram.

R1330