A		Reg. No. :												
		Question	n Pa	aper	· Co	de:	R3	303						
B.E./B.Tech. DEGREE EXAMINATION NOV 2024														
Third Semester														
Electrical and Electronics Engineering														
R21UEE303 - PRINCIPLES OF DIGITAL ELECTRONICS														
(Regulations R2021)														
Dura	ation: Three hours								Ν	/laxi	mum	n: 100) Ma	rks
Answer ALL Questions														
PART A - $(10 \text{ x } 1 = 10 \text{ Marks})$														
1.	How many entries will be in the truth table of a 4-input NAND gate? CO1- U								1- U					
	(a) 4	(b)8		(0	c)16					((d) 3	2		
2.	. Identify the Largest Binary Number that can be expressed with 12 bits?									CO	1- U			
	(a) (1111 1111 1111))	₂ (b) (4095)	10	(0	c) (F]	FF) ₁	6		(d)) All	of th	ne ab	ove	
3.	Which pair of Boolean expressions satisfies the idempotency property? CO1- U							1- U						
	(a) $A + \overline{A} = 1$, $A \cdot \overline{A} = 0$			(1	(b) A+A=A, A . A=A									
	(c) $A + 1 = 1, A \cdot 1 = A$			(0	(d) $A + 0 = A, A \cdot 0 = 0$									
4.	Find the number of outputs for 4 input decoder circuit CO1							1- U						
	(a) 2	(b) 16		(0	c) 4					((d) 5			
5.	Explain the toggle sta	te in JK Flip-Fl	ор										CO	1- U
	(a) Set $Q = 1$ and $Q =$	0	(b) Set $Q = 0$ and Q					Q = 1						
	(c) Change the output to the opposite state					(d) No change in output								
6.	An 8 bit register is us	ed to store											CO	1- U
	(a) 8 bit data	(b) 16 bit data		(0	c) 8 ł	oyte	data			(d) 2	2 byt	e dat	a	
7.	Internal propagation of	lelay of asynchro	onou	is cou	inter	is re	emov	ed by	у				CO	1- U
	(a) Ripple counter	(b) Ring counter	•	(c) N	Iodu	lus c	ount	er	(d) S	Sync	hron	ous	coun	ter

8.	What happens to the parallel output word in an asynchronous binary down counter whenever a clock pulse occurs?								
	(a) The output word decreases by 1. (b) The output word decreases by 2.								
	(c) The output word increases by 1. (d) The output word increases by 2.								
9.	Veri	Verilog HDL is a case-sensitive language. All keywords are in CO1-							
	(a) lowercase (b) uppercase (c) either lower or uppercase (d) bold letters								
10.	Find	the default value of the reg data type?		СО					
	(a) ((b) 1 (c) Z (c) Z	d) X						
PART – B (5 x 2= 10 Marks)									
11.	Dist		CO1- U						
12.	Convert the given expression in canonical SOP form $Y = AB + A'C + BC'$								
13.	Draw SR Flipflop using gates.								
14.	Why is the pulse mode operation of asynchronous sequential circuits not very CO1- U popular?								
15.	Develop Verilog Code to design half adder using gate level modeling.				App				
		PART – C (5 x 16= 80 Marks)							
16.	(a)	Convert the following $(147.3)_8$ to () ₁₆ $(010010101000)_2$ to () ₁₆ $(38.21)_{10}$ to () ₂ $(231.3)_{10}$ to () ₈	CO1-	U	(16)				
	Or								
	(D)	A 12 bit Hamming code word containing 8 bits of data and 4 parity bits is read from memory. What was the original 8 bit data word that was written in to memory if the 12 bit word read out is as A) 101110010100 B)111111110100		U	(16)				
17.	(a)	i) Design a Binary to Gray code converter.	CO2-	App	(12)				
		CO2-	App	(4)					
	(b)	i) Design a 8:1 Multiplexer using logic gates.	CO2-	App	(8)				
		11) Design a 4 to 2 encoder circuit using logic gates.	CO2-	App	(8)				

18. (a) Design a sequence detector to detect the sequence 1001 using JK CO2- App (16) flip-flops.

Or

- (b) Design a synchronous Modulo-10 Up Counter using JK flipflops. CO2- App (16)
- 19. (a) Implement the following function using PAL F1 (A, B, C) = $\Sigma(1, \text{ CO3- App} (16) 2, 4, 6)$; F2 (A, B, C) = $\Sigma(0, 1, 6, 7)$; F3 (A, B, C) = $\Sigma(1, 2, 3, 5, 7)$.

Or

- (b) Develop a PLA circuit to implement the logic function CO3- App (16) A'BC+AB'C+AC' and A'B'C'+BC
- 20. (a) Develop Verilog code to design 8 to 1 multiplexer using dataflow CO3- App (16) and behavioral modeling.

Or

(b) Develop Verilog Code to design full adder using gate level and CO3- App (16) behavioural modeling.