Reg. No:						

Question Paper Code:U3M24

B.E./B.Tech. DEGREE EXAMINATION, NOV 2024

Third Semester

Electrical and ElectronicsEngineering

21UMA324-PROBABILITY, STATISTICS, COMPLEX ANALYSIS AND NUMERICAL METHODS

(Regulations2021)

			•		
Dur	ation: Three hours			Maximum: 100 Marks	
		Answer Al	1 Questions		
		PART A - (10)	x 1 = 10Marks	s)	
1.	Large sample size is				CO6-U
	(a) 30	(b) >30	(c) < 30	(d) none of the above	
2.	The degrees of freedo	m for the sample size	n=25 in t tes	t is	CO6- U
	(a) 20	(b) 22	(c) 24	(d) 26	
3.	If A and B are indepe	endent events then P(A	$A \cap B) =$		CO6- U
	(a) 0	(b) P (A). P(B)	(c) P (A).	$P(B) \qquad (d) P(A) - B$	P(B)
4.	The r th moment about	origin is			CO6- U
	(a) $\mu(X)$	(b) $\mu(X^2)$	(c) $\mu(X^r)$	(d) None of the abo	ove
5.	When Gauss Jordan matrix.	method is used to s	solve AX=B,	A is transferred in a	CO6- U
	(a) diagonal	(b) identity	(c) square	(d) zero	
6.	Newton's method also	called m	nethod		CO6- U
	(a) tangents	(b) slope	(c) secants	s (d) false	
7.	In Euler's method, if l	h is small, the method	l is too		CO6- U
	(a) fast	(b) slow	(c) averag	e (d) None of	these

8.	prior va	lues are required to pre	dict the next value in M	ilne's method	CO6- U
	(a) 1	(b) 2	(c) 3	(d) 0	
9.	Simple pole is	a pole of order	_		CO6- U
	(a) 1	(b) 2	(c) 3	(d) 4	
10.	Find the order	of pole z=0 of the follo	owing functions $f(z) = \frac{e^z}{z}$; -	CO6- U
	(a)0	(b)3	(c)2	(d)1	
		PART –	B (5 x 2= 10Marks)		
11.	• •	4:3:2. In an experime	beans in the four group ent among 1200 beans		CO1- App
12.		standard deviation of the Calculate the value of the	ne binomial distribution e parameter 'n'.	20 and 4	CO2- App
13.	State the princ	iple used in Gauss Elim	nination Method.		CO6- U
14.	Write down th	e fourth order RungeKu	ıtta algorithm		CO6- U
15.	Expand log(1-	z) as a Taylor's series.			CO5 App
16.	rating the	earchers A and B add e student's level. Iden- say that the techniques	- C (5 x 16= 80Marks) opted different technique tify the Sampling distance Above Genius	stribution; nificant?	Ana (16)

					1 Otal
	Average		Average		
A	40	33	25	2	100
В	86	60	44	10	200
Total	126	93	69	12	300

Or

(b) Two independent samples of sizes 9 and 7 from a normal CO1-Ana (16)population had the following values of the variables.

Sample I	18	13	12	15	12	14	16	14	15
Sample II	16	19	13	16	18	13	15		

Identify the sampling distribution, Do the estimates of the population variance differ significantly.

17. (a) A Random Variable X has the following probability distribution CO2 -App (16)

X=x	0	1	2	3	4	5	6	7
P(X=x)	0	K	2 K	2 K	3 K	K ²	2 K ²	7 K ² + K

Find (i) 'K'

(ii)
$$P(X < 6)$$
, $P(X \ge 6)$ & $P(1.5 < X < 6.5 / X > 5)$

(iii) If
$$P(X \le x) > \frac{1}{2}$$
, Find the minimum value of 'x'

(iv) Distribution function of x. (V) E(X)

Or

(b) (i) A Random Variable X has the following probability CO2 -App (8) distribution

X=x	0	1	2	3	4	5	6	7	8
P(X=x)	a	3a	5a	7a	9a	11a	13a	15a	17a

Using the probability mass function, calculate the following

- (i) 'a'
- (ii) $P(X < 3), P(X \ge 3)$
- (iii) (0 < X < 5)
- (iv) distribution function.
- (ii) State and Prove the memory less property for an Exponential CO2 -App (8) distribution.
- 18. (a) (i) Solve the equation $e^x 3x = 0$ by iteration method CO3- App (8)
 - (ii) Solve 27x + 6y z = 85, 6x + 15y + 2z = 72, x + y + 54z = 110 CO3- App by Gauss Jacobi Method. (8)

Or

(b) (i) Using Power method find numerically largest Eigen value of CO3- App (8) $\begin{pmatrix} 5 & 0 & 1 \\ 0 & 2 & 0 \end{pmatrix}$

$$\begin{bmatrix} 3 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 5 \end{bmatrix}$$

(ii) Solve 27x + 6y - z = 85, 6x + 15y + 2z = 72, x + y + 54z = 110 CO3- App (8) by Gauss Seidel method.

19. (a) Using R-K method of fourth order, solve $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$ with CO4-App (16) $\mathbf{y}(\mathbf{0}) = \mathbf{1}$ at x = 0.2, x = 0.4

Or

- (b) Using Adam's Bash forth Predictor-Corrector method, find y(4.4) CO4-App given that $5xy' + y^2 = 2$, y(4) = 1, y(4.1) = 1.0049, y(4.2) = 1.0097 and y(4.3) = 1.0143
- 20. (a) Evaluate: $\int_{-\infty}^{\infty} \frac{\mathbf{x}^2}{(\mathbf{x}^2 + 4)(\mathbf{x}^2 + 9)} \mathbf{dx}$, using contour integration. (16)

Or

- (b) (i) Evaluate using Cauchy's Integral formula for $f(z) = \int_{C} \frac{2z-1}{z(z+1)(z-3)} dz, \text{ where 'C'} : |z| = 2.$ (8)
 - (ii) Find the Laurent's series of $f(z) = \frac{7z-2}{z(z+1)(z-2)}$ valid in the region 1 < |z+1| < 3