A
4
4 N

Reg. No.:					

Question Paper Code: 57302

B.E./B.Tech. DEGREE EXAMINATION, NOV 2024

Seventh Semester

Electrical and Electronics Engineering

15UEE702 - POWER SYSTEM OPERATION AND CONTROL

(Regulation 2015)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART A - $(10 \times 1 = 10 \text{ Marks})$

1. Which of the following represents the annual average load?

CO1-R

- (a) (KWh supplied in a day)/24
- (b) {(KWh supplied in a day)/ 24 } \times 365
- (c) $\{(KWh \text{ supplied in a month})/(30 \times 24)\}$
- (d) (KWh supplied in a year) $/(24 \times 365)$
- 2. What happens to frequency if the load on the generator increases?

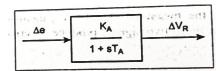
CO1-R

- (a) Speed increases and frequency decreases
- (b) Speed decreases and frequency decreases
- (c) Speed increases and frequency increases
- (d) Speed decreases and frequency increases
- 3. Unit of Load damping constant 'D' is

CO2- R

- (a) MVAr/Hz
- (b) MVA/Hz
- (c) MW/Hz
- (d) MW-s

4. Area of frequency response characteristic ' β ' is


CO2- R

- (a) 1/R
- (b) D

(c) D+ 1/R

(d) D - 1/R

5. This model may named as

CO3-R

- (a) Comparator
- (b) Amplifier
- (c) Exciter
- (d) Synchronous Generator
- 6. For synchronous condensers, the p.f. improvement apparatus should be located at CO3- R
 - (a) Sending end
- (b) Receiving end
- (c) Both (a) and (b)
- (d) None of these

7. Unit of λ is CO4-R

(a) Rs./hr

(b) Rs./MW

(c) Rs./MWh

(d) MW/Rs

8. The equality constraint, when the transmission line losses are considered, is CO4-R

$$\sum_{(a)_{i=1}}^{n} P_{G_i} - P_{L} = 0.$$

$$\sum_{(a)_{i=1}}^{n} P_{g_i} - P_L = 0. \qquad \sum_{(b)_{i=1}}^{n} P_{g_i} - P_D = P_L + P_G. \qquad \sum_{(c)_{i=1}}^{n} P_{g_i} - P_D = 0.$$

$$\sum_{(C)_{i=1}}^{n} P_{G_i} - P_{D} = 0.$$

 $\sum_{(\mathbf{d})_{i=1}}^{n} P_{\mathbf{G}_{i}} - P_{\mathbf{L}} = P_{\mathbf{D}}.$

9. State estimation scheme uses CO5-R

(a) Lagrangian function method

(b) Negative gradient method

(c) Lyapunov method

- (d)Weighted least square method
- 10. Security control system is a system of

CO5-R

(a) Manual control

- (b) Integrated automatic control
- (c) Conventional generation control
- (d) Both (a) and (b)

$$PART - B$$
 (5 x 2= 10Marks)

11. What is Load factor? CO1-R

12. What is meant by control area? CO2-R

13. What is meant by stability compensation? CO₃-R

14. Comparison between unit commitment and economic dispatch CO4-R

What is Energy Management System? What are the major functions of it? 15.

CO5-R

$$PART - C (5 \times 16 = 80 Marks)$$

16. (a) A generating station has the following daily load curve

CO₁ App (16)

Time	0-6	6-10	10-12	12-16	16-20	20-24
(hours)		0-10				
Load (MW)	40	50	60	50	70	40

Draw the load curve, load duration curve and compute the maximum demand and Evaluate the units generated per day, average load and load factor for the above problem.

Or

	consumers:		
	Industrial consumers – 2000kW		
	Commercial load-1000kW		
	Domestic load- 200kW		
	Domestic light- 500kW		
	If the maximum demand on the station is 3000 kW, and the number		
	ofunits produced per year is $50*10^5$.		
	(ii) Explain about plant level and system level controls.	CO1- U	(8)
(a)	A two area power system has two identical areas ,consider the following data:	CO2- App	(16)
	Area capacity = 1500MW		
	Nominal operating load = 750 MW		
	Inertia constant $= 5 \text{ sec}$		
	Speed Regulation of all regulating generators = 3 %		
	Frequency = 50 Hz		
	Damping coefficient = 1%		
	Governor time constant = 0.06 sec		
	Turbine time constant = 0.25 sec		
	A load increases $M_1 = 30MW$ occurs in area 1. Determine (i) Δf_{stat}		
	and $\Delta P_{12\text{stat}}$.		
	Or		
(b)	Develop a transfer function of the speed governing mechanism and sketch a block diagram. What are the components of speed governor system of an alternator? Explain in detail.	CO2- App	(16)
(a)	Draw the diagram of typical Automatic Voltage Regulator and develop Modelling of Automatic Voltage Regulator its block diagram representation	CO3- U	(16)
	Or		
(b)	(i) Derive the relations between voltage, power and reactive power at a node for applications in power system control.	CO3- U	(8)
	(ii) Discuss in detail about the generation and absorption of reactive power.	CO3- U	(8)

(b) (i) Calculate the diversity factor and the annual load factor of a CO1 App

generating station, which supplies the following loads to various

17.

18.

(8)

- 19. (a) (i) Explain how the forward dynamic programming solution is CO4-U applied in unit's commitment problem describe by using flow chart. (8)
 - (ii) Illustrate the λ iteration method for finding the solution of CO4-U (8) economic dispatch without transmission losses with a neat flow chart.

Or

(b) (i) Analyze priority list using full load average production for the CO4- U data given below. (10)

Unit	Loading		Fuel co	st para	Fuel cost	
No	limits					
	Min		a_{i}	b_i	c_{i}	
	Max					
1	100	400	0.006	7	600	1.1
2	50	300	0.01	8	400	1.2
3	150	500	0.008	6	500	1.0

 $P_D = 800MW.$

(ii) Explain about the thermal unit constraints

CO4-U (6)

20. (a) Enumerate the various operating states and the control strategies of CO5-U a power system (16)

Or

(b) Illustrate the different function that are performed by the SCADA CO5- U system. (16)