		Keg. 110.							
		Question Pape	r Code	: 5200	4				
	B.E.	/ B.Tech. DEGREE EX	KAMINA	TION, I	— NOV 20	24			
		Second S	Semester						
		Electrical and Elect	tronics E	ngineeri	ng				
		15UPH204 – SOLII	O STATE	E PHYSI	CS				
		(Common to EIE and E	Biomedic	al Engin	eering)				
		(Regulati	ion 2015))					
]	Duration: Three hours				Ma	aximu	ım: 1	00 N	1arks
		Answer AL	L Questi	ons					
		PART A - (10 2	x 1 = 10 1	Marks)					
1.	According to ohm's law, the relation between electric field E, conductivity σ and current density J is given as								CO1
	(a) $J = \sigma / E$	(b) $J = \sigma E$	(c) J	$= \sigma E^2$		((d) J =	= E /	σ
2.	Mobility of electron	s is defined as							CO1
	(a) flow of electrons per unit electric field								
	(b) average electron drift velocity per unit electric field								
	(c) inverse of condu	ıctivity							
	(d) the product of dr	rift velocity and electric	field						
3.	The direction of Hal	l voltage is							CO2-
	(a) parallel to applie	d electric field							
	(b) perpendicular to applied magnetic field only								
	(c) perpendicular to	applied electric field or	nly						
	(d) perpendicular to	both applied electric ar	nd magne	tic field					
4.	Donor type impuriti	es are the							CO2
	(a) trivalent atoms		(b) to	etravalen	nt atoms				
	(c) pentavalent atom	18	(d) d	ivalent a	itoms				

5.	Transformer cores are made of materials having					
	(a) lov	w hysteresis loss		(b) high hysteresis loss		
	(c) low permeability (d) low specific resistance				e	
6.	Meissner effect is strictly followed by					CO3-R
	(a) Ferromagnetic material			(b) paramagnetic material		
	(c) con	nducting material		(d) superconducting ma	terial	
7.	Orientational polarization					CO4-R
	(a) increases with temperature					
	(b) decreases with temperature					
	(c) independent of temperature					
	(d) first increases and then decreases with temperature					
8.	Ceramic materials are				CO4-R	
	(a) har	rd	(b) brittle	(c) both (a) and (b)	(d) ductile	
9.	Nano i	indicates				CO5-R
	(a) 10	⁻¹⁵ m	(b) 10^{-12} m	(c) 10^{-6} m	(d) 10^{-9} m	
10.	0. Which one of the following is a top down process of synthesizing nanoparticle?					CO5-R
	(a) ball milling method			(b) Sol – gel method		
	(c) Co	lloidal method	PART – B (5 x 2:	(d) Electrodeposition met = 10Marks)	hod	
11.	. State Wiedemann Franz law.					CO1-R
12.	Mention any two applications of Hall effect.					CO2-R
13.	What are ferrites?					CO3-R
14.	Define electrical susceptibility.					CO4-R
15.	Give any two properties of nanoparticles.					CO5-R
			PART - C (5 x	16= 80Marks)		
16.	Obtain an expression for electrical conductivity for metals on the basis of classical free electron theory and calculate electrical conductivity of a metal with relaxation time 10^{-14} second and density of electrons 6×10^{-28} m ⁻³ by Or					

17. (a) (i) Distinguish between direct and indirect band gap CO2-U semiconductor. (ii) What are the differences between intrinsic and extrinsic CO2-U semiconductors? Or (b) (i) Obtain the expression of Hall coefficient in terms of current density and electronic charge by defining Hall effect. (ii) How will you identify whether the given semiconductor is a CO2-U p-type or n-type semiconductor? 18. (a) Distinguish between diamagnetic, paramagnetic and CO3-U (16) ferromagnetic magnetic materials. Or (b) (i) Distinguish between Type I and Type II super conductors. CO3-U (8) (ii) Distinguish between hard and soft magnetic materials. CO3-U (8) 19. (a) Explain the electronic, ionic, orientational and space charge polarization in dielectrics. Or (b) Obtain an expression for the internal field experienced by an atom in a one dimensional array of atoms subjected to an external field and deduce Clausius – Mosotti equation. Using the above Clausius Mosotti equation. Using the above Clausius Mosotti equation, calculate the dielectric constant of the material for a solid elemental dielectric with density 3 × 10 ²⁸ atoms / m ³ having electronic polarisability 2 × 10 ⁻⁴⁰ Fm ² . 20. (a) Explain any one method of top down approach of synthesizing CO5-U (16) nanomaterial in detail. Or		(b)	Calculate carrier concentration in metals by deriving an expression for density of energy states in metals.	CO1-App	(16)
(ii) What are the differences between intrinsic and extrinsic CO2-U semiconductors? Or (b) (i) Obtain the expression of Hall coefficient in terms of current density and electronic charge by defining Hall effect. (ii) How will you identify whether the given semiconductor is a CO2-U p-type or n-type semiconductor? 18. (a) Distinguish between diamagnetic, paramagnetic and ferromagnetic magnetic materials. Or (b) (i) Distinguish between Type I and Type II super conductors. CO3-U (8) (ii) Distinguish between hard and soft magnetic materials. CO3-U (8) (iii) Distinguish between hard and soft magnetic materials. CO3-U (8) 19. (a) Explain the electronic, ionic, orientational and space charge polarization in dielectrics. Or (b) Obtain an expression for the internal field experienced by an atom in a one dimensional array of atoms subjected to an external field and deduce Clausius — Mosotti equation. Using the above Clausius Mosotti equation, calculate the dielectric constant of the material for a solid elemental dielectric with density 3 × 10 ²⁸ atoms / m³ having electronic polarisability 2 × 10 ⁻⁴⁰ Fm². 20. (a) Explain any one method of top down approach of synthesizing CO5-U (16) nanomaterial in detail. Or	17.	(a)		CO2-U	(8)
(b) (i) Obtain the expression of Hall coefficient in terms of current CO2-U density and electronic charge by defining Hall effect. (ii) How will you identify whether the given semiconductor is a CO2-U p-type or n-type semiconductor? 18. (a) Distinguish between diamagnetic, paramagnetic and CO3-U ferromagnetic magnetic materials. Or (b) (i) Distinguish between Type I and Type II super conductors. CO3-U (8) (ii) Distinguish between hard and soft magnetic materials. CO3-U (8) 19. (a) Explain the electronic, ionic, orientational and space charge polarization in dielectrics. Or (b) Obtain an expression for the internal field experienced by an external field and deduce Clausius – Mosotti equation. Using the above Clausius Mosotti equation, calculate the dielectric constant of the material for a solid elemental dielectric with density 3 × 10 28 atoms / m³ having electronic polarisability 2 × 10 -40 Fm². 20. (a) Explain any one method of top down approach of synthesizing CO5-U (16) nanomaterial in detail. Or			(ii) What are the differences between intrinsic and extrinsic semiconductors?	CO2-U	(8)
(ii) How will you identify whether the given semiconductor is a CO2-U p-type or n-type semiconductor? 18. (a) Distinguish between diamagnetic, paramagnetic and CO3-U (16) ferromagnetic magnetic materials. Or (b) (i) Distinguish between Type I and Type II super conductors. CO3-U (8) (ii) Distinguish between hard and soft magnetic materials. CO3-U (8) 19. (a) Explain the electronic, ionic, orientational and space charge polarization in dielectrics. Or (b) Obtain an expression for the internal field experienced by an external field and deduce Clausius – Mosotti equation. Using the above Clausius Mosotti equation. Using the above Clausius Mosotti equation, calculate the dielectric constant of the material for a solid elemental dielectric with density 3 × 10 ²⁸ atoms / m³ having electronic polarisability 2 × 10 ⁻⁴⁰ Fm². 20. (a) Explain any one method of top down approach of synthesizing CO5-U (16) nanomaterial in detail. Or		(b)	(i) Obtain the expression of Hall coefficient in terms of current	CO2-U	(8)
ferromagnetic magnetic materials. Or (b) (i) Distinguish between Type I and Type II super conductors. CO3-U (8) (ii) Distinguish between hard and soft magnetic materials. CO3-U (8) 19. (a) Explain the electronic, ionic, orientational and space charge polarization in dielectrics. Or (b) Obtain an expression for the internal field experienced by an atom in a one dimensional array of atoms subjected to an external field and deduce Clausius – Mosotti equation. Using the above Clausius Mosotti equation. Using the above Clausius Mosotti equation , calculate the dielectric constant of the material for a solid elemental dielectric with density 3×10^{28} atoms / m³ having electronic polarisability 2×10^{-40} Fm². 20. (a) Explain any one method of top down approach of synthesizing CO5-U (16) nanomaterial in detail.			(ii) How will you identify whether the given semiconductor is a	CO2-U	(8)
 (b) (i) Distinguish between Type I and Type II super conductors. CO3-U (8) (ii) Distinguish between hard and soft magnetic materials. CO3-U (8) 19. (a) Explain the electronic, ionic, orientational and space charge polarization in dielectrics. Or (b) Obtain an expression for the internal field experienced by an external field and deduce Clausius – Mosotti equation. Using the above Clausius Mosotti equation , calculate the dielectric constant of the material for a solid elemental dielectric with density 3 × 10 ²⁸ atoms / m³ having electronic polarisability 2 × 10 ⁻⁴⁰ Fm². 20. (a) Explain any one method of top down approach of synthesizing CO5-U (16) nanomaterial in detail. Or 	18.	(a)	ferromagnetic magnetic materials.	CO3-U	(16)
(ii) Distinguish between hard and soft magnetic materials. CO3-U (8) 19. (a) Explain the electronic, ionic, orientational and space charge polarization in dielectrics. Or (b) Obtain an expression for the internal field experienced by an atom in a one dimensional array of atoms subjected to an external field and deduce Clausius – Mosotti equation. Using the above Clausius Mosotti equation , calculate the dielectric constant of the material for a solid elemental dielectric with density 3×10^{28} atoms / m³ having electronic polarisability 2×10^{-40} Fm². 20. (a) Explain any one method of top down approach of synthesizing CO5-U (16) nanomaterial in detail. Or		(b)	CO3-U	(8)	
polarization in dielectrics. Or (b) Obtain an expression for the internal field experienced by an CO4-U atom in a one dimensional array of atoms subjected to an external field and deduce Clausius – Mosotti equation. Using the above Clausius Mosotti equation , calculate the dielectric constant of the material for a solid elemental dielectric with density 3×10^{28} atoms / m³ having electronic polarisability 2×10^{-40} Fm². 20. (a) Explain any one method of top down approach of synthesizing CO5-U nanomaterial in detail. Or				CO3-U	(8)
 (b) Obtain an expression for the internal field experienced by an atom in a one dimensional array of atoms subjected to an external field and deduce Clausius – Mosotti equation. Using the above Clausius Mosotti equation, calculate the dielectric constant of the material for a solid elemental dielectric with density 3 × 10 ²⁸ atoms / m³ having electronic polarisability 2 × 10 ⁻⁴⁰ Fm². 20. (a) Explain any one method of top down approach of synthesizing CO5-U nanomaterial in detail. Or 	19.	(a)	polarization in dielectrics.	CO4-U	(16)
nanomaterial in detail. Or		(b)	CO4-U	(16)	
	20.	(a)	nanomaterial in detail.	CO5-U	(16)
(b) Explain the properties and applications of nano materials. CO5-U (16)		(b)	.Explain the properties and applications of nano materials.	CO5-U	(16)