Reg. N	0.	
--------	----	--

Question Paper Code: U4303

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2024

Fourth Semester

Electrical and Electronics Engineering

21UEE403-PRINCIPLES OF DIGITAL ELECTRONICS

(Regulations 2021)

		(Regula	110113 2021)			
Dui	ration: Three hour		LL Questions	Maximum: 100 Marks		
			-			
		`	$0 \times 1 = 10 \text{ Marks}$			
1.	Identify the even parity code from the following			CO1- U		
	(a) 11001	(b) 1110	(c) 0111	(d)0110		
2.	Calculate the ()	₂ equivalent of(125) ₈		CO1- U		
	(a) 1010101	(b) 1001001	(c) 11001100	(d) 111000		
3.	3. Which pair of Boolean expressions satisfies the idempotency property?					
	(a) A+ $\frac{1}{A}$ =1, A. $\frac{1}{A}$	=0	(b) $A+A=A$, A	. A=A		
	(c) $A + 1 = 1$, $A \cdot 1 = A$		(d) $A + 0 = A, A$. 0 = 0		
4.	Find the number of OR gates required to design 8 to 3 encoder circuit					
	(a) 3	(b)5	(c) 8	(d) 16		
5.	Find the output o	CO1- U				
	(a) 1	(b)0	(c)No change	(d) High impedance		
6.	Which flip-flop v	vill act as Master Slave?		CO1- U		
	(a) SR	(b) JK	(c) D	(d) T		
7.	Internal propagation delay of asynchronous counter is removed by			l by CO1- U		
	(a) Ripple counte	er	(b) Ring counter			
	(c) Modulus cour	nter	(d) Synchronous	counter		

8.	. What happens to the parallel output word in an asynchronous binary down counter, whenever a clock pulse occurs?						(CO1- U
(a) The output word decreases by 1.(b) The output word(c) The output word increases by 1.(d) The output word				word decre	ases by 2.			
				(d) The output	(d) The output word increases by 2.			
9.	The	The Verilog HDL code starts with the keyword				(CO1- U	
	(a) a	lways	(b)module	(c)en	dmodule	(d) ite	ems	
10.	Find	I the default value	of the reg data ty	ype?			(CO1- U
	(a) ()	(b) 1		(c) Z		(d) X	
			PART -	– B (5 x	2= 10Marks)			
11.	Explain propagation delay.							- U
12.	Explain SOP and POS.						CO1- U	
13.	Explain the drawback of SR Flip-flop.						CO1- U	
14.	Draw PLA Structure.						CO1- U	
15.	. Differentiate blocking and non-blocking assignments.			CO1- U				
			PAR	T-C (5	x 16= 80Marks)			
16.	(a)		a) X-Y and (b) Y		00 and Y = 100001 2's Complement a	_	CO1- U	(16)
				Or				
	(b)	i) Explain Error ii) Explain alpha		ror correc	ction codes with ar	example.	CO1- U	(12) (4)
17.	(a) (i) Simplify the following function using K-Map. $F(A,B,C,D) = \sum m(0,1,2,3,4,6,8,9,10,12,14,15)$.				CO2- App	(10)		
		(ii) Design a hall gates.	f subtractor and	-	ent the same usin	g logic	CO2- App	(6)
	(b)	(i) Dogian a Div	anny to Gray ago	Or to convo	rtor		CO2 Ann	(12)
	(b)	` ′	nary to Gray coollif adder and imp		the same using lo	ogic gates.	CO2- App	(12) (4)
18.	(a)	Design a synch	ronous Modulo-	-7 Up Co Or	ounter using JK f	lipflops	CO2- App	(16)
	(b)	Design and imr	olement the vari	ous type	s of shift register	S	CO2- App	(16)

19. (a) Develop a PLA circuit to implement the logic function CO3-App (16) A'BC+AB'C+AC' and A'B'C'+BC

Or

- (b) Implement the following function using PAL F1 (A, B, C) = Σ (1, CO3- App 2, 4, 6); F2 (A, B, C) = Σ (0, 1, 6, 7); F3 (A, B, C) = Σ (1, 2, 3, 5, 7).
- 20. (a) Develop Verilog code to design Demultiplexer and Decoder by using CO3- App (16)
 Or
 - (b) Develop Verilog Code to design 8 to 3 Encoder using gate level and CO3- App (16) data flow modeling.