		Reg. N	0.:												
Question Paper Code: U4302															
B.E. / B.Tech. DEGREE EXAMINATION, NOV 2024															
Fourth Semester															
Electrical and Electronics Engineering															
21UEE402 – CONTROL SYSTEMS															
(Regulations 2021)															
Dura	Duration: Three hours Maximum: 100 Marks									rks					
Answer ALL Questions															
	PART A - $(10 \text{ x } 1 = 10 \text{ Marks})$														
1.	The output is said to be zero state response because CO1-U)1-U							
	(a) Initial	(b) Final (c) Steady state (d) Impulse response													
2.	In a signal flow gra	l flow graph, nodes are represented by small								CO)1-U				
	(a) Circles	(b) Squares			(0	(c) Arrows					(d)	(d) Pointers			
3.	(S+2)(S+1)/S2(S+3	5)(S+4) is a _	S+4) is a								CO3-App				
	(a) Type- 0	(b) Type	(b) Type -1 (c			(c) Type -2			(d)	(d) Type – 3					
4.	If an impulse response of a system is e ^{-5t} , what would be its transfer CO3-App function?							App							
	(a) 1/ s – 5	(b) 1/ s -	- 5		(0	c) (s+	-1)/	(s+5)		(d)) $(s^2 - s^2)$	- 5s),	/ (s-5	5)
5.	Phase margin of a system is used to specify w				y wh	which of the following?								CO	1-U
	(a) Frequency response			(ł	(b) Absolute stability										
	(c) Relative stability				(d) Time response										
6.	The frequency at which the two asymptotic meet in a magnitude plot is CO1-U called $\neg \neg$									1-U					
	(a) Resonant peak.				(ł	o) Ba	nd v	vidth							
	(c) Corner frequency				(d) Resonant frequency										
7.	Consider the loop locus diagram the c	onsider the loop transfer function $K(s+6)/(s+3)(s+5)$ In the root cus diagram the centroid will be located at:						CO	1-U						
	(a) -4	(b) -1			(0	c) -2					(d)) -3			

8.	Technique is not applicable to nonlinear system?								
	(a) Nyquist Criterion		(b) Quasi linearization						
	(c) Functional analysis	S	(d) Phase-plane representation						
9.	A set of variables desc	cribes the state of the s	ystem is called	CO1-U					
	(a) Input variables	(b) Output variables	(c) State variables	(d) None of these					
10.	State space analysis is	applicable to		CO1-U					
	(a) Linear system		(b) Nonlinear system						
	(c) MIMO		(d) All of these						
PART - B (5 x 2= 10 Marks)									
11.	When defining the tra the system?	Vhen defining the transfer function, what happens to the initial conditions of CO1-U ne system?							

- 12. Determine the type and order of the system $G(s) H(s)=10(S+3)/S^2(S+4)$ CO2-App
- 13. Explain the gain cross over frequencyCO1-U
- 14. Define the breakaway point and breaking point CO1-U
- 15. Consider system given by $Y(s) / U(s) = (s+3) / (s^3+3s+2)$. Obtain state space CO3-App representation in controllable form.

PART – C (5 x 16= 80 Marks)

16. (a) Write the differential equations governing the mechanical system CO2-App (16) shown in figure. Construct the force – voltage and force – current electrical analogous circuits and verify by writing mesh and node equations.

(b) Using block diagram reduction techniques find closed loop CO2-App (16) transfer of the system whose block diagram shown in figure.

17. (a) The open loop transfer function of unity feedback system is given CO3-App (16) by G(s) =K/S(ST+1), where K and T are positive constants. By what factor the amplifier gain K be reduced, so that the peak overshoot of unit step response of the system is reduced from 75% to 25%

Or

- (b) A unity feedback control system has an amplifier with gain CO3-App (16) KA=10 and gain ratio ,G(s)=1/s(s+2) in the feed forward path.A derivative feedback ,H(s)=sKo is introduced as a minor loop around G(s) .Determine the derivative feedback constant ,Ko so that the system damping factor is 0.6.
- 18. (a) Plot the Bode diagram for the following transfer function and CO3-App (16) obtain the gain and phase cross over frequencies.

$$G(s) = \frac{10}{s(1+0.4s)(1+0.1s)}$$

Or

(b) Construct the Polar plot for the following transfer function and CO3-App (16) obtain the gain margin and phase margin whose

$$G(s) = \frac{1}{s(1+s)(1+2s)}$$

- 19. (a) Construct Routh array and Examine the stability of the system CO3-App (16) represented by the characteristics equation,
 - i) $S^5 + 4S^4 + 2S^3 + 2S^2 + 3S + 5 = 0.$
 - ii) $S^5 + 4S^4 + 8S^3 + 8S^2 + 7S + 4 = 0$

Comment on the location of the roots of characteristics equation.

- (b) Sketch the Root locus of the system, whose open loop transfer CO3-App (16) function is G(s)=(K)/(S(S+2)(S+4))
- 20. (a) Examine controllability and observability of the following state CO5-Eva (16) models.

$$A = \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix} B = \begin{bmatrix} 1 \\ 0 \end{bmatrix} C = \begin{bmatrix} 1 & -1 \end{bmatrix}$$
$$A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix} B = \begin{bmatrix} 1 & 0 \\ 1 & 2 \\ 2 & 1 \end{bmatrix} C = \begin{bmatrix} 1 & 1 & 2 \\ 3 & 1 & 5 \end{bmatrix}$$
$$A = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & -3 \\ 0 & 1 & -1 \end{bmatrix} B = \begin{bmatrix} 40 \\ 10 \\ 0 \end{bmatrix} C = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$$
$$Or$$

(b) Consider a unity feedback system with open loop transfer function CO5-Eva (16) G(s)=K/s(s+8). Design a lead compensator to meet the following specifications. % peak overshoot 9.5% Natural frequency of oscillations $\omega n = 12rad/sec$ Velocity error constant, $K_v >= 10$