Reg.	No.	:
------	-----	---

A

		Question	n Paper (Code: 94303		
	B.1	E. / B.Tech. DEC	GREE EXA	MINATION, NO	V 2024	
			Fourth Sen	nester		
		Electrical a	and Electror	nics Engineering		
		19UEE403 – I	Principles o	f Digital Electron	ics	
		(Regulations	s 2019)		
Dur	ration: Three hours				Maximum: 100	Marks
		An	swer ALL (Questions		
		PART	A - (10 x 1	= 10 Marks)		
1.	Choose the anothe	r name of base				CO1- U
	(a) Foundation	(b) radix		(c) subscript	(d) none	
2.	Identify the even p	parity code from	the following	ng		CO1- U
	(a) 11001	(b) 1110	(c) 0111		(d)0110	
3.	What will be the n	umber of selecti	on lines in a	a 16 to 1 Multiple	xer?	CO1-U
	(a) Type- 0	(b) Type	e -1	(c) Type -2	(d) Type - 3	3
4.	Find the number o	f the gates require	red to build	a half adder are		CO1- U
	(a) EX-OR gate an	nd NOR gate		(b) EX-OR gate	and NOR gate	
	(c) EX-OR gate an	nd AND gate		(d) Four NAND	gates	
5.	What is the output	of SR flip flop	when S=1, I	R=0 is?		CO1- U
	(a) 1	(b) 0		(c) No change	(d) High im	pedance
6.	What is output of	D Flipflop when	D=1?			CO1- U
	(a) 1	(b)0		(c) No Change	(d) X	
7.	How many natural	states will there	e be in a 4-b	it ripple counter?		CO1- U
	(a) 4	(b) 8		(c) 16	(d) 32	

8.	Hov repr	v much storag esent?	ge capacity	does each s	stage in a shif	t register	С	201- U
	(a) (One bit	(b) two	o bits	(c) four bits		(d) eight bits	
9.	Met	al links are ma	de up of				C	201- U
	(a)		(b)	Magnesium	(c) Nichrome	(d) Silicon diox	ide
	Poly	crystalline	sulphide					
10.	Whi	ich of the follo	wing loops	are supported	by verilog?		C	201- U
	(a) i	f-else loop	(b) fo	or loop	(c) while lo	oop	(d) All the abo	ove
			Р	ART – B (5 x	2= 10 Marks)			
11.	Clas	ssify the types	of Binary C	odes based on	positional wei	ghting	C	CO1- U
12.	Define SOP and POS. CO1-U							CO1- U
13.	Def	ine a sequentia	l logic circu	iit. Give an ex	ample.		C	201- U
14.	Def	ine Races					C	201- U
15.	Def	ine CPLD and	FPGA.				C	201- U
				PART - C (5)	5 x 16= 80Mark	as)		
16.	(a)	(i) Encode the	e binary wo	rd 1011 in to s	seven bit Hamn	ning code.	CO1- U	(10)
		(ii) Evaluate l	Excess 3 co	de and gray co	ode for $(F)_H$ and	$(AB)_{H}$	CO1- U	(6)
	(b)	Explain the ty example for e	pes of weig each type.	ghted and non-	-weighted code	s with an	CO1- U	(16)
17.	(a)	(i) Simplify thusing gates.	ne following F(A,B,	g function usin C,D) = $\sum m(0)$	ng K - Map and 0,1,2,3,4,5,7,10,	d implement 11,12,15)	t CO2- App	(8)
		(ii) Design a f	full subtract	or and implen Or	nent using logic	c gates.	CO2- App	(8)
	(b)	(i) Implement = $\sum m (0, 1, 2, -1)$	t the given (6,7,8,9,10,	function using 11,12,15)	g 8 X 1 MUX	F (<i>A</i> , <i>B</i> , <i>C</i> , <i>L</i>	D) CO2- App	(8)
		(ii) Design 3	to 8 decode	r using logic g	gates.		CO2- App	(8)
18.	(a)	Design a sync	chronous M	odulo-10 Up (Or	Counter using J	K flip flops	. CO2- App	(16)
	(b)	Design synch sequence 1,3,	ronous sequ 4,5 repeated	uential circuit 11y. Use T flip	that goes throu -flops for your	igh the cour design.	nt CO2-App	(16)

19. (a) Design an asynchronous sequential circuit with two inputs X1 and CO4- App (16) X2 with one output Z. Initially both inputs are equal to '0'. When X1 or X2 becomes '1', the output becomes '1'. When the second input becomes '1', the output changes to '0'. The output stays at '0' until the circuit goes back to the initial state.

Or

- (b) Develop the state diagram and primitive flow table for a logic CO4- App (16) system that has two inputs X and Y and a single output Z. which is to behave in the following manner. Initially, both the inputs and Outputs are equal to 0.Whenever X=1 and Y=0, the Z becomes 1 and whenever X=0 and Y=1 The Z becomes 0.When inputs are zero; X=Y= 0 or inputs X=Y=1, the Z doesn't change it remains in the previous state. State input values are not to have any effect in changing the Z output.
- 20. (a) Implement a 3 X4X2 PLA PLD circuit to implement the logic CO2- App (16) functions

 $F_1(x,y,z) = \sum m(0,1,3,5)$ $F_2(x,y,z) = \sum m(3,5,7)$ Or

(b) Develop Verilog code for full adder using gate level and data flow CO2- App (16) modeling.