٨
$\boldsymbol{\Box}$

Reg. No. :												
------------	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code: U3201

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2024

Professional Elective

Electrical and Electronics Engineering

21EEV201 SPECIAL ELECTRICAL MACHINES

(Regulations 2021)									
Dura	ation: Three hours			Maximum: 100 Marks					
		Answer All	Questions						
	PART A - $(10 \times 1 = 10 \text{ Marks})$								
1.	In PMBLDC motor F	ield Magnet on the		CO1 -U					
	(a) Stator	(b) Rotor	(c) both (a) and b)	(d) None of these					
2.	In PMBLDC motor ro	otor is		CO1 -U					
	(a) Permanent Magne	t (b) Electromagne	et (c) both a and b	(d) Copper Coil					
3.	In PMSM the air gap	flux distribution is		CO1 -U					
	(a) Sinusoidal	(b) Quasi sinusoidal	(c) both a and b	(d) None of the above					
4.	Pmsm working princi	ple is		CO1 -U					
	(a) Amphere circuital	law (b) ohms law	(c) magnetic locking	(d) lenz law					
5.	What is the angle bety	ween stator direct axis	and quadrature axis?	CO1 -U					
	(a) 90°	(b) 0°	(c) 45°	(d) 60°					
6.	Types of control techn	niques used in SRM		CO1 -U					
	(a) Voltage control		(b) Frequency contro	ol					
	(c) v/f control		(d) Hysteresis contro	ol .					
7.	Operation of stepper i	motor at high speed is 1	referred to as	CO1 -U					
	(a) Fast forward	(b) Slewing	(c) Inching	(d) Jogging					

8.	The rotational speed of a given stepper motor is determined by solely by						
	(a) S	Shaft load	(b) Polarity of Stator curre	ent			
	(c) S	Step pulse frequency	(d) Magnitude of stator cu	rrent			
9.	Rad	ial airgap motor has			CO1 -U		
	(a) a	axial laminations	(b) radial laminations				
	(c)b	oth laminations	(d) none of the above				
10.	Тур	es of linear induction motor based on th	e principle of operation		CO1 -U		
	(a) l	Linear Induction motor	(b) Linear synchronous mo	otor			
	(c) l	DC commutator linear motor	(d) All the above				
		PART – B (5 x	x 2= 10Marks)				
11.	What are the advantages of brushless dc motor drives?						
12.	Wha	at are the assumptions made in the deriv	ration of EMF equation for P	MSM	CO1 -U		
13.	Illustrate the different modes of operation of switched reluctance motor.						
14.	Wha	at is stepper motor?			CO1 -U		
15.	List	the applications of synchronous relucta	nce motors.		CO1 -U		
		PART – C (5 x 16= 80Marks)				
16.	(a)	Explain the Construction & principle of motor	of operation of PMBLDC	CO1 U	(16)		
	4.	Or	1 DIFFI D C	G04.77	(4.6)		
	(b)	Sketch the structure of power controlle Explain the functions of each block	er for PMBLDC motor &	CO1 U	(16)		
17.	(a)	PMSM	g principle of operation of	CO2 Aı	na (16)		
	(1-)	Or	n the control of normanant	CO2 4	(16)		
	(b)	Integrate a suitable microprocessor fo magnet synchronous motor.	r the control of permanent	CO2 Ai	na (16)		
18.	(a)	Draw the cross sectional view of swite explain the principle of Operation Or	tched reluctance motor and	CO3 U	(16)		

	(b)	Describe the following: (i) Role of microprocessors in control of switched reluctance motor (ii) Sensorless operation	CO3 U	(16)
19.	(a)	Describe in detail the construction and working of variable reluctance stepper motor.	CO4 U	(16)
	(b)	Draw and explain drive circuits and their performance characteristics for stepper motor	CO4 U	(16)
20.	(a)	(i) Give a detailed technical note on the variable reluctance motor and the advantages.(ii) Investigate the performance of the synchronous reluctance motor with neat phasor diagram.	CO5 U	(8+8)
	(b)	Summarize the constructional details, principle of operation and the application of Hysteresis motor	CO5 U	(16)