Reg. No.:										
-----------	--	--	--	--	--	--	--	--	--	--

Question Paper Code: 99320

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2024

Elective

Electrical and Electronics Engineering

19UEE920- MACHINE LEARNING

		(Regul	ations 2019)	
Dur	ation: Three hours		Maximum:	100 Marks
		PART A - (1	$0 \times 1 = 10 \text{ Marks}$	
1.	Application of machine	learning methods	s to large databases is called	CO1 -R
	(a) data mining		(b) artificial intelligenc	e
	(c) big data computing		(d) internet of things	
2.	In what type of learning	g labeled training	data is used	CO1 -R
	(a) unsupervised learning	ng	(b) supervised learning	
	(c) reinforcement learning	ing	(d) active learning	
3.	Regression trees are oft	en used to be		CO2- R
	(a) Linear (b) Non-linear	(c) Categorical	(d) Symmetrical
4	How do you choose the	root node while	constructing a Decision Tree?	CO2- R
	(a) attribute with high e	entropy	(b) high entropy and ir	nformation gain
	(c) largest information	gain	(d) None of the above	
5	ID3 stands for			CO3- R
	(a) Induction Decision	Tree	(b) Iterative Data base	
	(c) Iterative Dichotomis	ser	(d) Iterative Decision	Ггее
6	The output of training p	process in machine	e learning is	CO3- R
	(a) machine learning me	odel	(b) machine learning algorithms	hm
	(c) null		(d) accuracy	

7	You are given reviews of few netflix and neutral. Classifying reviews of a new	1	CO4- App
	(a) supervised learning	(b) unsupervised learning	
	(c) semisupervised learning	(d) reinforcement learning	
8	finds the most specific hypoexample	othesis consistent with the training	CO4- R
	(a) Find-S (b) Rote-Learn	(c) Candidate Elimination (d) All o	of the above
9	Back propagation is a learning technic network by propagating weight changes	que that adjusts weights in the neural	CO5- R
	(a) Forward from source to sink		
	(b) Backward from sink to source		
	(c) Forward from source to hidden nodes	S	
	(d) Backward from sink to hidden nodes	5	
10	The Bayes rule can be used in		CO5- R
	(a) Solving queries	(b) Increasing complexity	
	(c) Decreasing complexity	(d) Answering probabilistic query	
	PART – B	$(5 \times 2 = 10 \text{Marks})$	
11.	Explain the steps in designing learning s	systems in detail	CO1-U
12.	Differentiate between Gradient Descent	and Perceptron training rule.	CO2-U
13.	Explain Brute force Bayes Concept Lear	rning.	CO3 -U
14.	Consider a medical diagnosis problem hypotheses:	in which there are two alternative	CO4 -App
	(i) That the patient has a particular form	of cancer (+) and	
	(ii) That the patient does not (-). A pacomes back positive. The test returns a comes back positive. The test returns a comes the cases in which the disease is actured in only 97% of the cases in Furthermore, .008 of the entire popular whether the patient has Cancer or not us	correct positive result in only 98% of ally present, and a correct negative which the disease is not present. lation have this cancer. Determine	
15.	Explain the methods involved in learning	g disjunctive sets of rules.	CO5 -U

16. (a) Explain the steps in designing learning systems in detail

CO1-U

(16)

(16)

Or

(b) Describe the procedure of building Decision tree using ID3 with Gain and Entropy. Illustrate with example.

CO1-U

17. (a) Write the final version space for the below-mentioned training example using the candidate elimination algorithm.

CO2 -App

(16)

Origin	Manufacturer	Color	Decade	Туре	Example Type
Japan	Honda	Blue	1980	Economy	Positive
Japan	Toyota	Green	1970	Sports	Negative
Japan	Toyota	Blue	1990	Economy	Positive
USA	Chryster	Red	1980	Economy	Negative
Japan	Honda	White	1980	Economy	Positive
Japan	Toyota	Green	1980	Economy	Positive
Japan	Honda	Red	1980	Economy	Negative

Or

With the given data set, find B₀ and B₁ by using logistic (b) Regression.

CO2 -App

(16)

When X = 6, find the value of Y.

X	1	2	4	3	5
Y	1	3	3	2	5

18. (a) Classify a set of 10 students in to two clusters based on the CO3-Ana (16)obtained marks and rank using appropriate method. (Analyze)

Marks	99	59	97	87	86	77	67	57	47	40
Rank	1	7	2	3	4	5	6	8	9	10

Or

- (b) By using the fitness function as f(x) = 2x with the interval [0, CO3-Ana (16)15], find the optimal solution using appropriate algorithm.
- 19. (a) Derive an equation for MAP hypothesis using Bayes theorem and CO4- Ana (16)explain Maximum Likelihood Hypothesis for predicting probabilities.

Or

(b) Consider the sample dataset mentioned below and calculate CO4-Ana (16) $\frac{\partial L}{\partial W1}$ by using back propagation algorithm. Assume 1. Your network has only one hidden layer. 2. All the weights are equal to 1 and all the bias are equal to 0.

Name	Weight (lb)	Height (in)	Gender
Alice	133	65	F
Bob	160	72	M
Charlie	152	70	M
Diana	120	60	F

20. (a) Draw the perceptron network with the notation. Derive an CO5-U equation of gradient descent rule to minimize the error.

Or

(b) Explain Radial Basis Function and Case Based Reasoning CO5- U (16)