	Reg	g. No:									
Question Paper Code :R3M23											
B.E./B.Tech. DEGREE EXAMINATION, NOV 2024											
Third Semester											
Electronics And Communication Engineering											
R21UMA323- NUMERICAL ANALYSIS AND LINEAR ALGEBRA											
(Regulations R2021)											
Dura	tion: Three hours		Max	imum: 100 Marks							
PART A - $(10 \text{ x } 1 = 10 \text{ Marks})$											
1.	Trapezoidal rule is so sum oftrapez	e CO6-U									
	(a) n	(b) n+1	(c) n-1	(d) 2n							
2.	In Simpson's 3/8 rule the number of subintervals should be CO6-U										
	(a) multiple of 1	(b) multiple of 2	(c) multiple of 3	(d) All of these							
3.	Taylor Series method will be very useful to give some values for CO6-U RK, Milne's and Adam's methods										
	(a) initial	(b) final	(c) intermediate	(d) two							
4.	prior values a method	are required to predict the	he next value in Milne ³	s CO6-U							
	(a) 1	(b) 2	(c) 3	(d) 4							
5.	PDE of second order,	$ifB^2 - 4AC < 0$ then		CO6-U							
	(a) parabolic	(b) elliptic	(c) hyperbolic (d) N	on homogeneous							
6.	Bender-Schmidt recurrence equation is valid if $\lambda \square =$ CO										
	(a) $\frac{1}{2}$	(b) $\frac{1}{3}$	$(c)\frac{1}{4}$ (c)	1) 1							
7.	In a vector space V, f	for every $x, y \in V$ then the	e property x+y=y+x is C	CO6-U							
	(a) commutative	(b) associative	(c) identity (d) inverse							

			-										
	(a) V	7		(b) W	(b) W			both V and W	(d) none	e of the	se		
9.	In a vector space V, if $\langle x, y \rangle = \langle y, z \rangle$ then CO									CO6-U			
	(a) y	z = z		(b) y	(b) $y \neq z$			y = - z	(d) none of these				
10.	In a	vector	space ,	ax =		_			CO6-U				
	(a) <mark> </mark>	a + x	:	(b) <mark> </mark> a	- x		(c)	(c) $ a x $		(d) $ a / x $			
	PART - B (5 x 2= 10 Marks)												
11.	Evaluate $\int_{1}^{2} \frac{dx}{1+x^{2}}$ with 2 equal intervals using trapezoidal rule CO1-												
12.	Using Euler's method find y(0.2) given $\frac{dy}{dx} = y + e^x$, y(0) =0									CO2-	App		
13.	Write down the Standard Five Point formula and Diagonal Five Point formul to find the numerical solution of the Laplace equation $U_{xx} + U_{yy} = 0$								òrmula	CO6-U			
14.	Verify the vectors $(1,0,0)$, $(1,1,0)$ in R ³ is a subspace of R ³									CO4-App			
15.	Find the norm of $(1,2,3)$ in $V_3(R)$ with standard inner product.								CO5-App				
16.	PART – C (5 x 16= 80Marks) (a) (i) Compute $f'(0)$ and $f''(4)$ from the data							COI	CO1-App (8)				
		X:	0	1	2	3	4]					
		Y:	11	2.718	7.381	20.08 6	54.59 8	-					
	(ii) Evaluate $\int_{0}^{\pi} \sin x dx$ with 10 equal intervals by									CO1-App (8)			
	(a) Trapezoidal rule												
	(b) Simpson's $\frac{1}{3}$ rule.												
	Or												
	(b)	(b) (i) Evaluate $\int_{0}^{2} \frac{dx}{4+x^{2}}$ using Romberg's method correct to 4 decimal									(8)		
	places. (ii) Evaluate. $\int_{1}^{5} \frac{dx}{x}$ using three point Gaussian quadrature formula.								COI	-App	(8)		

17. (a) (i) Using Taylor's series method find y(0.1) given $y' = x^2 + y^2$ with CO2-App (8) y(0)=1CO2-App (8) (ii) Using R-K method of fourth order, solve $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$ with y(0)=1 at x=0.2Or

(b) (i) Given
$$\frac{dy}{dx} = 1 + y^2$$
, $y(0) = 0$, $y(0.2) = 0.2027$, $y(0.4) = 0.4228$, CO2-App (8)
 $y(0.6) = 0.6841$ evaluate $y(0.8)$ by Adams – Bash forth Method.
(ii) Given $\frac{dy}{dx} = x^3 + y$, $y(0) = 2$, $y(0.2) = 2.443$, $y(0.4) = 2.99$, $y(0.6) = 3.68$, CO2-App (8)
Find $y(0.8)$ by Milne's Predictor & Corrector method

18. (a) (i) Solve
$$\frac{\partial^2 u}{\partial x^2} = 2 \frac{\partial u}{\partial t}$$
, $u(0,t) = 0$, $u(4,t) = 0$, $u(x,0) = x(4 - x)$. Take CO3-App (8)
h = 1 and find the values of u up to t = 5 using Bender-Schmidt's difference equation.

(ii) Solve
$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$$
 in $0 \le x \le 5$, $t \ge 0$, $u(0,t) = 0$, $u(5,t) = 100$, CO3-App (8)
 $u(x,0) = 20$ find the values of u for 1 time step function with $h = 1$ by Crank-Nicholson's difference method.

Or

- (b) Solve $\nabla^2 u = -10(x^2+y^2+10)$ over the square mesh with sides CO3-App (16) x=0,x=3,y=0,y=3 with u=0 on the boundary with h=1.
- (i) Verify the vectors (2,1,0), (-3,-3,1), (-2,1,-1) in R³ is a basis of CO4-App (8) 19. (a) \mathbb{R}^3 (ii) Find the dimension of the subspace spanned by the vectors CO4-App (8) (1,0,2), (2,0,1), (1,0,1) in $V_3(R)$

Or

(b) (i) If T: $\mathbb{R}^2 \to \mathbb{R}^2$ be linear transformation defined by CO4-App (8) $T(a_1, a_2) = (a_1 + a_2, a_1)$ then find nullity(T), rank(T) ,Is T one-toone? Is T onto? Also check the rank nullity theorem. (ii) Find the matrix of the linear transformation T: $R^2 \rightarrow R^2$ defined CO4-App (8) by

T(a,b) = (2a-3b,a+b) for the standard basis of R^2

20. (a) (i) Show that the following function defines an inner product on CO5-App (8) V₂(R)where x = (x₁, x₂) and y= (y₁, y₂) and (x, y) = 6 x₁ y₁ + 7x₂ y₂ (ii) If x = (2,1 + i, i) and y = (2 - i, 2, 1 + 2i) then verify Schwarz's CO5-App (8) inequality.

Or

(b) Apply Gram-Schmidt process to construct an orthonormal basis CO5-App (16) for V₃(R) with the standard inner product for the basis {v₁, v₂, v₃} where v₁ = (1,0,1), v₂ = (1,3,1) and v₃ = (3,2,1)