		Reg. No. :		
Question Paper Code: R3408				
B.E./B.Tech. DEGREE EXAMINATION, NOV 2024				
Third Semester				
Electronics and Communication Engineering				
R21UEC308-ELECTROMAGNETIC FIELDS AND TRANSMISSION LINES				
(Regulations R2021)				
Dur	ation: Three hours			Maximum: 100 Marks
PART A - $(5 \times 1 = 5 \text{ Marks})$				
1.	What is the Unit of	magnetic flux density?		CO1- U
	(a) Wb/m^2	(b) Tesla	(c) Both a) and b)	(d) A/m
2.	Electromagnetic wa	aves are produced by		CO1- U
	(a) static charge ((b) accelerated charge	c) moving charge	d) charged particle
3.	When the load impedance is not equal to characteristic impedanceCO1- Uof transmission line takes place.CO1- U			
	(a) Insertion	(b) Reflection	(c) Both a) and b)	(d) None of these
4.	The Secondary con	stants of a transmission	line are	CO1-U
	(a) α	(b) γ	(c) β	(d) All the above
5.	Single stub matchin	ng is applicable for	frequency.	CO1-U
	(a) Single	(b) Double	(c) Low	(d) High
$PART - B (5 \times 3 = 15 \text{ Marks})$				
6.	Justify the magnitude of electric flux density and volume charge density is CO1-U equal.			
7.	State polarization of a uniform plane wave.			CO1- U
8.	A constant k low pass filter has a cut off frequency of 10 kHZ. The design CO2-App impedance is 600 ohms. Find the value of L.			
9.	Measure the reflection coefficient of a 75 Ω transmission line which is CO2-App terminated by a load impedance of 30+j20 Ω .			
10.	•	aves? Give examples.		CO1-U

PART – C (5 x 16= 80 Marks)

11. (a) Illustrate the Maxwell equation for both integral and point form for CO2-App (16) time varying field by applying suitable theorem

Or

- (b) Measure the capacitance by applying Laplace's equation for the CO2-App (16) potential field in homogenous region between two concentric conducting spheres with radius a & b and $V=V_0$ at r = a and V=0 at r = b.
- 12. (a) Examine the EM wave propagation parameters in Free space and CO3-App (16) also derive the expression for electric and magnetic field.

Or

- (b) Develop the EM wave propagation parameters in Perfect dielectric CO3-App (16) and also derive the expression for electric and magnetic field.
- 13. (a) Design a constant k high pass filter with suitable filter sectionsCO3-App(16)

Or

- (b) Construct low pass filter having a cut off frequency of 5000Hz and CO3-App (16) design impedance of 600 ohms. The frequency of infinite attenuation is 1.25 fc
- 14. (a) A 65 Ω lossless used at a frequency where wavelength 80 cm CO5-Ana (16) terminated by load of 120 + j70 Ω . Analyze the reflection co-efficient, VSWR and input impedance using smith chart.

Or

- (b) Analyze a single stub match for a load of 150+j225 ohms for a 75 CO5-Ana (16) ohms line at 500 MHz using smith chart.
- 15. (a) Determine the solution of electric and magnetic fields of TE waves CO1-U (16) guided along rectangular waveguide.

Or

(b) Integrate the TM wave field equations between parallel planes into CO1-U (16) classes.