Reg. No. :						

Question Paper Code:R3402

B.E./B.Tech. DEGREE EXAMINATION, NOV 2024

Third Semester

Electronics and Communication Engineering

R21UEC302 – DIGITAL ELECTRONICS AND DESIGN

(Regulations R2021)

Duration: Three hours				Maximum: 100 Marks			
			PART A - (5 x	1 = 5Marks)			
1.	A re	gister is able to he	old			CO1-U	
	(a) l	Data					
	(c) l	Nibble					
2.	Which one of the following has capability to store data in extremely high densities?					CO1-U	
	(a) l	Register	(b) Capacitor	(c) Semiconductor	(d) Flip-Flop)	
3.	How are the sequential circuits specified in terms of time sequence? CO1						
	(a) l	By Inputs	(b) By Outputs	(c) By Internal states	(d) All of the	e above	
4.	Asy	nchronous sequen	tial logic circuits usually p	erform operations in	CO1-U		
	(a) i	dentical mode	(b) fundamental mode	(c) reserved mode	(d) reset mo	de	
5.	The Logical expression $Y = A + A'B$ is equivalent to				CC	02-App	
	(a) <i>Y</i>	Y = A'B	(b)Y = AB	(c)Y = A' + B	$(\mathbf{d})Y = A +$	В	
			PART - B (5 x)	3= 15Marks)			
6.	For term	a switching functions are possible?	ion of 'n' variables, how m	any distinct min terms and m	ax CO1-	-U	
7.	Imp	lement Boolean e	xpression for EX - OR gate	e using NAND gates only.	CO2·	App	
8.	Desi	ign 2 to 4 decode	r using the truth table		CO2·	-App	
9.	Distinguish between mealy and moore machines.					CO1-U	
10.	Differentiate synchronous and asynchronous sequential circuits.					CO1-U	
			PART - C (5)	x 16= 80Marks)			
11.	(a)	Simplify the exp map method	pression $y = \pi (0, 1, 4, 5, 6, 8, 9)$	9,12,13,14) using Karnaugh	CO2-App	(16)	
			Or				
	(b)	Find a minimal $\Sigma m(3,4,5,7.9.13)$	SoP and PoS for the expres 3,14,15) using Karnaugh m	ssion y= ap method	CO2-App	(16)	

12.	(a)	Design SR and D flip flops	CO2-App	(16)
		Or		
	(b)	Design JK and T flip flops	CO2-App	(16)
13.	(a)	Implement switching circuits with hazard free conditions.	CO2-App	(16)
		Or		
	(b)	Design a sequence detector that produces an output '1' whenever the sequence 101101 is detected.	CO2-App	(16)
14.	(a)	Design a Binary-to-Gray converter using read only memory architecture.	CO2-App	(16)
		Or		
	(b)	Design a hazard free switching circuits with relevant examples.	CO2-App	(16)
15.	(a)	Analyze the function of EX-OR using basic gates and universal gates	CO3-Ana	(16)
		Or		
	(b)	Analyze the function of EX-NOR using basic gates and universal gates	CO3-Ana	(16)