4		4
4	1	•
٠	l	

Reg. No.:						

Question Paper Code: U3404

B.E./B.Tech. DEGREE EXAMINATION, NOV 2024

Third Semester

Electronics and Communication Engineering

				\mathcal{C}	\mathcal{C}			
		21UEC30	4 – Sign	nals and Systems				
		(R	Regulatio	ons 2019)				
Dur	ration: Three hours				Maximum: 10	0 Marks		
		Ansv	wer ALL	Questions				
		PART	A - (5 x	1 = 5 Marks)				
1.	A resistive-capac	itive network is a _		system.		CO1- U		
	(a) causal & static	2		(b) Non causal &	static			
	(c) causal &dynamic			(d) Non causal &dynamic				
2.	If x (t) is odd, the	n its Fourier series	ent must be		CO1- U			
	(a) Real and odd	(b) imaginary a	nd odd	(c) real and even	(d) imaginary a	nd even		
3.	If $F(s) = L[f(t)] =$	$\frac{2(s+1)}{s^2+4s+7}$ then the	initial v	value of the signal is	3	CO3- App		
	(a) 0	(b) 2		(c) 1/2	(d) i	nfinity		
4.	Let $(n) = (1/2)^n$ Then $y(e^{j^0})$ is	$(n), (n) = x^2(n) \ an$	$dY(e^{j\omega})$	be the Fourier Tran	nsform of $y(n)$.	CO4- App		
	(a) 1/4	(b) 2		(c) 4	(d) 4	1/3		
5.	The ROC X(z) ca	nnot contain any				CO1- U		
	(a) poles	(b) zeros	(c) p	oles or zeros	(d) multiple po	les		
		PART -	- B (5 x	3= 15 Marks)				
6.	. State the relation between Impulse, step and ramp signals.							
7.	. State and prove the Parseval's theorem in Fourier series.							
8.	State the initial ar	ı .	CO1- U					

List the properties of convolution sum. Give the condition for the system to be

casual with respect to impulse response.

CO1- U

10. Derive the relationship between z-transform and Fourier transform.

11. (a) A mathematical expression for the discrete-time signal x [n] is CO2- App (16) given

$$x(n) = \begin{cases} n, & 0 \le n \le 3 \\ 3, & n = 4 \\ 0, & else \end{cases}$$

Sketch and label each of the following signals.

(i) x[n-2]; (ii) x[2n]; (iii) x[-n]; (iv) x[-n+2]

Or

- (b) Draw the wave forms represented by following step functions. CO2- App (16)
 - (i) f1(t) = 2 u(t-1)
- (ii) f2(t) = -2u(t-2)
- (iii) f(t) = f1(t) + f2(t)
- (iv) f(t) = f1(t) f2(t)
- 12. (a) Obtain the trigonometric Fourier series for the half wave rectified CO3-App (8) Sine function of 't'.

Or

- (b) Obtain the Fourier Transform of the signal e^{-|t|} and plot its CO3-App (16) magnitude and phase spectrum.
- 13. (a) Realize the following LTI system in Direct form, cascade and CO5- Ana (16) parallel structure. Comment on the results obtained.

$$\frac{d^3y(t)}{dt^3} + 4\frac{d^2y(t)}{dt^2} + 7\frac{dy(t)}{dt} + 8y(t) = 5\frac{d^2x(t)}{dt^2} + 4\frac{dx(t)}{dt} + 7x(t)$$
Or

(b) Obtain the convolution of the given two signals using the CO5-Ana (16) convolution property of the Laplace transform and evaluate the results also with the conventional method of convolution.

 $x(t) = e^{-3t} u(t)$ and $y(t) = e^{-2t} u(t)$

14. (a) Find the DTFT of the given signal $x(n) = a^{|n|}$ and plot magnitude CO4-Ana (16) and phase spectrum.

Or

(b) Find the convolution of the given two signals using the CO4-Ana (16) convolution property of DTFT.

$$x(n) = (1/2)^n u(n)$$
 and $h(n) = (1/3)^n u(n)$

15. (a) Realize the direct form I, direct form II, cascade and parallel CO5- Ana (16) structure for the given difference equation. Comment on the results obtained.

$$y(n) - 6y(n-1) + 6y(n-2) = x(n) + 3x(n-2)$$

Or

(b) Consider an LTI system with impulse response

CO5- Ana (16)

$$h[n] = \begin{cases} a^n & n \ge 0 \\ 0 & n < 0 \end{cases}$$

and input

$$x[n] = \begin{cases} 1 & 0 \le n \le N - 1 \\ 0 & otherwise \end{cases}$$

Determine the output y[n] by explicitly evaluating the discrete convolution of x[n] and h[n]