С	Reg. No. :												
Question Paper Code: U3402													
B.E./B.Tech. DEGREE EXAMINATION, NOV 2024													
	Third Semester												
	Electronics and Communication Engineering												
	21UEC302 – Digital Electronics and Design												
(Regulation 2019)													
Dura	ation: Three hours							Μ	axin	num:	100	Mar	ks
	Ansv	ver A	LL Ç	Juest	ions								
PART A - $(5 \times 1 = 5 \text{ Marks})$													
1.	The Boolean function Y=AB+CD is to be realized using only 2-input NAND gates. The minimum number of gates required is							CC)1- U				
	(a) 2 (b) 3		(c) 4					(d) :	5			
2.	In a combinational circuit, the output at any time depends only on the at that time.									CC)1- U		
	(a) Voltage (b) Intermediate value	S		(c) I	npu	t val	ues		(d)	Clo	ck pı	ılses	
3.	The truth table for an S-R flip-flop has how many VALID entries?							CC	01- U				
	(a) 1 (b) 2			(c) 3	5				(d)	4			
4.	The behavior of a synchronous seque defining the signals at	ntial	circu	it cai	ı be	prec	licted	l by				CO)1- U
	(a) discrete instants of time (b) continuous instants of time							time					
	(c) sampling instants of time (d) at any instant of time												
5.	Which one of the following has capal densities?	oility	to sto	ore d	ata i	n ex	trem	ely h	igh			CC)1- U
	(a) Register (b) Capacitor (c) Sen	nicon	ducto	or		(d) F	Flip-l	Flop				
PART - B (5 x 3 = 15 Marks)													
6.	Perform the following code conversions: $(AB2)_{16} \rightarrow (?)_2 \rightarrow (?)_8 \rightarrow (?)_{10}$.								(CO2-	- App		
7.	Compare encoder and decoder.											CC)1- U
8.	Distinguish between synchronous con	unter	and a	async	hro	nous	cou	nter.				CC	01- U

9.	How to differentiate fundamental mode from pulsed mode asynchronous CO1- U sequential circuit.						
10.	How	many programmable gates are needed for PROM?	CO1- U				
11.	(a)	PART – C (5 x 16= 80Marks) Find a minimal sum-of-products for the Boolean expression $f(w, x, y, z) = \sum m(1,2,3,7,8,9,10,11,14,15)$ using tabulation method.	CO2- App	(16)			
	(b)	Or Find a minimal sum-of-products for the Boolean expression $f(A, B, C, D) = \sum (1,3,4,5,9,10,11) + \sum \varphi(6,8)$ using the tabulation method.	CO2- App	(16)			
12.	(a)	Design a 4-bit parallel adder/subtractor and explain the operation with a logic diagram.	CO2-App	(8)			
	(b)	Or Implement the Boolean function using 8:1 multiplexer $f(A, B, C, D) = \sum m(1,3,4,11,12,13,14,15).$	CO2- App	(16)			
13.	(a)	Design shift register counters using flip flops Or	CO2- App	(16)			
	(b)	Design PISO and PIPO shift register using D flip flop.	CO2- App	(16)			
14.	(a)	Analyze fundamental mode with pulse mode circuits and justify it Or	CO3-Ana	(16)			
	(b)	Design a serial binary adder using D flip flops and T flip flop for the numbers 1011 and 0110 and also justify your answer.	CO3-Ana	(16)			
15.	(a)	Analyze simplification of Boolean function using PROM, PLA and PAL.	CO3-Ana	(16)			
	(b)	Or Analyze the combinational circuit given below, using PLA and PAL. $F1(A,B,C) = \Sigma (0,1,2,4)$; $F2(A,B,C) = \Sigma (0,5,6,7)$.	CO3-Ana	(16)			