Question Paper Code: U6402									
B.E. / B.Tech. DEGREE EXAMINATION, NOV 2024									
Sixth Semester									
Electronics and Communication Engineering									
21UEC602 - VLSI DESIGN									
(Regulations 2021)									
Duration: Three hours Maximum: 100 Marks									
PART A - $(5 \times 1 = 5 \text{Marks})$									
1.	The possible signal v	(CO1- U						
	(a) 2	(b) 5	(c) 4	(d) 11					
2.	. The distance between the source and drain is called CO								
	(a) Channel	(b) Gate	(c) Drain	(d) Source					
3.	The resistance and ca	pacitance product of the	ne MOS transistor is called	(CO1- U				
	(a) intrinsic delay	(b) Extrinsic delay	(c) both a & b	(d) none					
4.	. In positive logic convention, the true state is represented as								
	(a) 1	(b) 0	(c) -1	(d) -0					
5.	Gate capacitance per unit area is scaled by				CO1- U				
	(a) α	(b)1	(c) 1/β	(d) β					
$PART - B (5 \times 3 = 15 Marks)$									
6.	Design a D flip-flop circuit using behavioral level description.			CO2 - App					
0. 7.	What are the different operating modes of MOS transistor?			CO1- U					
<i>7</i> . 8.	Why does interconnect increase the circuit delay?			CO1 – U					
9.	Design the AND gate using pseudo NMOS logic.								
10.	State the Application of Adiabatic logic.								
- •••				CO1 – U					

PART – C (5 x 16= 80Marks)							
11.	(a)	Explain the VLSI design flow of Verilog HDL.	CO1 – U	(16)			
		Or					
	(b)	Explain design methodology and hierarchy model with suitable example.	CO1 – U	(16)			
12.	(a)	Design the OUT=(AB+CD)' using CMOS layout design rules. Or	CO1 – U	(16)			
	(b)	Derive the expression for minimum possible delay of an N-stage path.	CO1 – U	(16)			
13.	(a)	Discuss the different reliability problems related to the design of reliable chips.	CO1 – U	(16)			
	Or						
	(b)	Discuss the principle of constant field scaling and also write its effect on device characteristics.	CO1 – U	(16)			
14.	(a)	Design latches and flip-flops using CMOS circuits.	CO2 – App	(16)			
		Or					
	(b)	Explain the concept of modified booth multiplier with suitable examples.	CO2 – App	(16)			
15.	(a)	Analyze the Different voltage scaling method using to design low power CMOS Circuits.	CO1 – U	(16)			
Or							
	(b)	Analyze different voltage scaling methods for low power design influence of voltage scaling on power and delay.	CO1 – U	(16)			