С		Reg. No. :													
Question Paper Code: U6603															
B.E. / B.Tech. DEGREE EXAMINATION, NOV 2024															
	Sixth Semester														
	Electronics and Communication Engineering														
	2 1U	EC603-IMAGE	E PRO	DCES	SSIN	G &	AN	ALY	YSIS						
		(Re	egula	tions	2021)									
Dur	Duration: Three hours Maximum: 100 Marks														
		Answ	er AI	LL Q	uestio	ons									
PART A - $(5 \times 1 = 5 \text{ Marks})$															
1.	mimic the human visual system.											CO1	-U		
	(a) Computer vision (b) Computer Graphics														
	(c) Image processing (d) Image														
2.	A binary image pixel is represented bybit.											CO1	-U		
	(a) One	(b) Two			(c) F	our				(d)	Eig	ht			
3.	. Canny edge detection algorithm is based on										(201-	- U		
	(a) Ideal model (b) step edge (c) real model (d) smoothing mo								odel						
4.	For the total number of 1650 test patterns, only the 65 are correctly recognized CO2- App test patterns, calculate the accuracy rate.									pp					
	(0	c) 46.	38				(d) 38.46								
5.	Identify the kind of le expressions".	arning algorithr	n for	"faci	ial ide	entit	ies f	for fa	acial				(201-	- U
	(a) Prediction (b) Recognition patterns														
	(c) Recognizing anomalies (d) Generating patterns														
		PART –	B (5	x 3=	15 N	1ark	s)								
6.	Differentiate computer vision and computer graphics.										CO1- U				
7.	. Justify Karhunen -Loeve transform is an optimal transform.									CO1- U					
8.	What is region based	image segmenta	tion	?									CC)2-A	pp

9. Consider a 4 X 4 matrix as shown below:

1	3	2	1
2	9	1	1
1	3	2	3
5	6	1	2

Applying max pooling on this matrix and find the new matrix.

10. State the function of K – means clustering.

$$PART - C (5 \times 16 = 80 \text{ Marks})$$

11. (a) Illustrate the concept of radiometry using thin lens. CO1- U (16)

Or

- (b) (i) Given a triangle with points (1, 1), (0, 0) and (1, 0). Apply shear CO1-U (16) parameter 2 on X axis and 2 on Y axis and find out the new coordinates of the object.
 (ii) Given a square object with coordinate points A(0, 3), B(3, 3), C(3, 0), D(0, 0). Apply the scaling parameter 2 towards X axis and 3 towards Y axis and obtain the new coordinates of the object.
- 12. (a) How finite sequence of equally-spaced samples of a function is CO2-App (16) converted into a same-length sequence of equally-spaced samples of the discrete-time Fourier transform ?

Or

(b) Define Histogram equalization of an image.A 3-bit image of size CO2-App (16) 4×5 is shown below. Compute the histogram equalized image.

0	1	1	3	4
7	2	5	5	7
6	3	2	1	1
1	4	4	2	1

13. (a) Analyze the performance of dilation and erosion morphological CO4-App (16) operation for image segmentation in detail with examples.

Or

(b) Perform region splitting and merging for the given input image. CO4-App (16)

2

U6603

CO1- U

5	6	6	6	7	7	6	6
6	7	6	7	5	5	4	7
6	6	4	4	3	2	5	6
5	4	5	4	2	3	4	6
0	3	2	3	3	2	4	7
0	0	0	0	2	2	5	6
1	1	0	1	0	3	4	4
1	0	1	0	2	3	5	4

14. (a) Analyze the pattern recognition problem and explain its various CO5-App (16) stages with neat diagram.

Or

- (b) Identify which method is suitable for processing the pixel data and CO5-App (16) image recognition and implement with suitable derivations.
- 15. (a) Consider an image containing one arbitrary object. Apply affine CO6-Ana (16) transformation for the following cases:
 - i. Rotation
 - ii. Translation

Or

- (b) Consider an image containing one arbitrary object. Apply affine CO6-Ana (16) transformation for the following cases:
 - i) Rotation
 - ii) Translation

U6603