\mathbf{C}

Reg. No.:					

Question Paper Code: 97403

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2024

Seventh Semester

Electronics and Communication Engineering

19UEC703- Image Processing & Machine Learning

(Regulation 2019)

Dur	ation: Three hours			Maximum:	100 Marks	
		Answer ALl	L Questions			
		PART A - (5 x	1 = 5 Marks			
1.	Which surface best o	beys the laws of reflec	tion?		CO1- U	
	(a) Specular Surface	(b) Lambertian Surfa	ace (c) Normal surf	face (d) All o	of the above.	
2.	A grey level image p	ixel is represented by _	bit.		CO1- U	
	(a) One	(b) Two	(c) Four	(d) Eight		
3	Canny edge detection	n algorithm is based on	,		CO1- U	
	(a) Ideal model	(b) step edge	(c) real model	(d) smootl	ning model	
4.		er of 1650 test patterns, calculate the accur	•	re correctly	CO2- App	
	(a) 38.25	(b) 25.38	(c) 46.38	(d) 38.46		
5.	metho	ds are used to group da	ata samples into differ	ent classes	CO3- U	
	(a) Clustering	(b) Segmentation	(c) Classification	(d) Pattern 1	recognition	
		PART - B (5 x	3= 15 Marks)			
6.	Differentiate comput		CO1- U			
7.	. State the concept of image transform.					
8.	. What is segmentation?					
9.	Write short notes on Recurrent network.					
10.	Draw a decision tree to implement one simple real time example.					

$PART - C (5 \times 16 = 80 Marks)$

11. (a) Illustrate the concept of radiometry using thin lens. CO1- U (16)

Or

(b) Derive the expression for the image formation process in various CO1- U (8)

- projections.

 12. (a) Obtain the Discrete Fourier Transform for the given vectors CO2-App (16)
- Input image matrix=[0 0;255 255] [2 x 2] matrix. Also analyze how the Fourier transform is used if the image is rotated or translated.

Or

(b) Apply contrast stretching to improve the dynamic range of the CO2- App given image (16)

3	3	7	8	2
2	2	4	3	5
5	;	0	2	1
4		3	2	1

13. (a) What do you understand by dilation and erosion in CO1- U (16) morphological operation? Explain in detail.

Or

- (b) Explain in detail how an image is segmented using region CO1- U splitting and merging algorithm and how the segmented object is represented by chain codes.
- 14. (a) Explain the various steps in pattern recognition. CO1- U (16)

Or

- (b) Explain in details about the different types of classifier. CO1- U (16)
- 15. (a) Describe the Major challenges in medical image segmentation CO1- U (16)
 Or
 - (b) Explain in detail about Supervised clustering. CO1- U (16)