A		Reg. No. :										
		Question I	Paper	Code:	U4M	122						
	B.E./B.Tech. DEGREE EXAMINATION, NOV 2024											
	Fourth Semester											
	Electronics and Communication Engineering											
	21UMA422 - PROBA	BILITY STATIS	STICS .	AND M.	ATHE	EMAT	ICA	LS	[RU	CTU	RES	5
		(Re	gulation	ns 2021)								
Dura	tion: Three hours						Μ	laxin	num	: 100) Ma	rks
		Answe	er ALL	Question	ns							
		PART A -	(10 x 1	1 = 10 M	larks)							
1.	The limiting form of	a Binomial distr	ibution	is							CC)6- U
	(a) Exponential (b) Poisson (c) Normal						(d) None of the above				e	
2.	The r th moment about	origin is									CC)6- U
	(a) $\mu(X)$	(b) $\mu(X^2)$	(a) <i>µ</i>	(X)					(d) X	r L		
3.	Large sample size is										CC)6- U
	(a) 30	(b) >30	((c) < 30		((d) n	one	of th	e abo	ove	
4.	The degrees of freedo	m for the sample	size n=	= 25 in C	Chi-squ	uare te	est is	5			CC)6- U
	·			2					(1)			
_	(a) $(n-1)(n-2)$	(b) n -2	(c) n	-3					(d) r	1 - 1		
5.	SSE for one way desig	gn is									CC)6- U
	(a) 0	(b) TSS-SSC	(c) T	SS-SSC	-SSR		(d) [ГSS-	SSC	-SSF	۲-SS	K
6.	The degrees of freedom classification is	m for the variation	on due	to error t	term in	n one v	way				CC)6- U
	(a) N-1	(b) N-2	(c) (l	N-C)					(d) C	2-1		
7.	If the Random Process	s $\{X(t)\}$ with me	an has	Auto co	orrelati	ion fu	nctic	on		(204-	· App
	$R(\tau) = 16 + 9e^{- \tau }$ Then	the Variance of	the pro	ocess is								
	(a) 16	(b) 25	(c) 6)					(d) 9			

8. Given
$$R(\tau) = 25 + \frac{4}{1+6\tau^2}$$
 What is $E[X^2(t)]$?
(a) 25 (b) 29 (c) 26 (d) 27
9. $P \rightarrow \neg Q$ is equivalent to CO6- U
(a) $\neg P \land Q$ (b) $P \land \neg Q$ (c) $\neg (P \land Q)$ (d) $P \lor \neg Q$
10. If P:Mark is rich, Q: Mark is happy then the symbolic form of the statement is Mark is poor but happy
(a) $\neg (P \land Q)$ (b) $P \land \neg Q$ (c) $\neg P \land Q$ (d) $P \lor \neg Q$
PART – B (5 x 2= 10 Marks)

11. A discrete random variable X with probability distribution CO1-App

Х	0	1	2	3	4	5
P(X)	a	3a	5a	7a	9a	11a

Using the probability mass function, Calculate the value of the constant ' a ' and mean value.

- 12. If $\mathbf{s}_{1}^{2} = 1.354$ and $\mathbf{s}_{2}^{2} = 5.588$ then compute the value of F- ratio CO2- Ana
- 13. Write down the format of ANOVA table for one way classification CO3- Ana
- 14. The power spectrum of a WSS process X (t) is given by $S_{xx} (\omega) = \frac{4}{4 + \omega^2}$ Find CO4 App the autocorrelation.
- 15. Construct the truth table for $(P \land \neg Q) \lor (P \land R) \lor (Q \land R)$ CO5- App

$$PART - C (5 \times 16 = 80 Marks)$$

16. (a) (i) A Random Variable X has the following probability distribution CO1-App (8)

X=x	0	1	2	3	4	5	6	7
P(X=x)	0	K	2 K	2 K	3 K	K^2	2 K 2	$7 K^{2} + K$

Using probability mass function Compute the following

(i) 'K' (ii) P(X > 6), (iii) distribution function.

(ii) Using the probability mass function of Poisson distribution, CO1-App (8)Compute the moment generating function and hence find mean and variance

- (b) (i) State and Prove the memory less property for an Exponential CO1- App (8) distribution
 (ii) In a large consignment of electric bulbs 10 % are defective. A CO1 App (8) random sample 20 bulbs are taken for inspection. Find the probability that (i) all are good bulbs (ii) exactly three defective bulbs
- 17. (a) Two researchers A and B adopted different techniques while rating CO2- Ana (16) the student's level. Identify the Sampling distribution; Can you say that the techniques adopted by them are significant?

Researchers	Below	Average	Above	Genius	Total
	Average		Average		
А	40	33	25	2	100
В	86	60	44	10	200
Total	126	93	69	12	300
		Or			

(b) (i) The theory predicts the population of beans in the four groups A, CO2- Ana (8)
B, C and D should be 9:3:3:1. In an experiment among 1600 beans, the numbers in the four groups were 882, 313, 287 and 118. Does the experimental result support the theory?

(ii) On the basis of information noted below, find out whether the CO2- Ana (8) new treatment is comparatively superior to the conventional one.Identify the sampling distribution.

	Favorable	Non-	Total
		Favorable	
conventional	40	70	110
New	60	30	90
Total	100	100	200

18. (a) Analyze the following of Latin square design experiment,.

A (12)	D (20)	C (16)	B (10)
D (18)	A (14)	B (11)	C (14)
B (12)	C (15)	D (19)	A (13)
C (16)	B (11)	A (15)	D (20)

The letters A,B,C,D denote the treatments and the figures in brackets denote the observations,

CO3- Ana

(16)

(b) A company appoints 4 salesman A, B, C and D and observes their CO3- Ana (16) sales in 3 seasons: Summer, winter and Monsoon. The figures (in lakhs of Rs.) are given in the following table:

		А	В	С	В
	Summer	45	40	38	37
Season	Winter	43	41	45	38
	Monsoon	39	39	41	41

Carry out an analysis of Variance.

19. (a) (i) If the auto correlation function of the random binary CO4- App (8) transmission is given by $R_{XX}(\tau) = \begin{cases} 1 - \frac{|\tau|}{T} & ; |\tau| \le T \\ 0 & ; |\tau| \ge T \end{cases}$ Find the

Power spectral density function.

(ii) Using the properties of auto correlation function, compute the CO4-App (8) Mean, Mean Square value and Variance of $R_{xx}(\tau) = 25 + \frac{4}{1 + 6\tau^2}$

(b) (i) If the Power spectral density of a WSS processes is given by CO4- App (8)

$$\mathbf{S}(\boldsymbol{\omega}) = \begin{cases} \frac{\mathbf{b}}{\mathbf{a}} (\mathbf{a} - |\boldsymbol{\omega}|) & ; & |\boldsymbol{\omega}| \leq \mathbf{a} \\ \mathbf{0} & ; & |\boldsymbol{\omega}| > \mathbf{a} \end{cases}$$

Find the auto correlation function of the Process.

(ii) Compute the power spectral density for the auto correlation CO4- App (8) function $R_{XX}(\tau) = e^{-\alpha \tau^2}$, $\alpha > 0$

- 20. (a) (i) Compute the PCNF and PDNF for $(\neg P \rightarrow R) \land (Q \leftrightarrow P)$ CO5- App (8)
 - (ii) Using rules of inference theory and CP Rule, CO5-App (8) derive $P \to (Q \to S), \neg R \lor P, Q \Rightarrow R \to S$

Or

(b) (i) Construct the truth table of ¬(P ∨ (Q ∧ R)) ↔ ((P ∨ Q) ∧ (P → R)) CO5- App (8)
(ii) Prove that following Premises are inconsistent: CO5- App (8)
If the contract is valid then John is liable for penalty.
If John is liable for penalty then he will go bankrupt.
If the bank will loan him money then he will not go bankrupt.
As a matter of fact, The contract is valid and the bank will loan him money.

U4M22