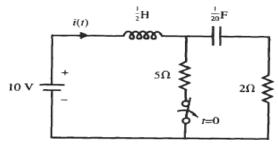
		Reg. No. :											
Question Paper Code: U4409													
B.E. / B.Tech. DEGREE EXAMINATION, NOV 2024													
Fourth Semester													
Electronics and Communication Engineering													
21UEC409–SIGNALS AND LINEAR SYSTEMS													
(Regulations 2021)													
Du	ation: Three hours						Max	ximu	im: 1	1001	Mark	S	
Answer ALL Questions													
PART A - $(5 \times 1 = 5 \text{ Marks})$													
1.	. For the signal, $x(n) = \log (\cos(a\pi n+d))$ where $a = 50$ Hz, What is the time period CO1-U of the signal, if Periodic?												
	(a) 0.16s	(b) 0.08s	(c) 0.	12s			(d	l) 0.0)4s				
2.	Fourier transform of a Gaussian pulse is										CO	1- U	
	(a) Another Gaussian p	ulse	(b) Squared Sinc pulse				e						
	(c) Sinc pulse		(d) Impulse train										
3.	Given that F(s) is a one	sided L.T. of f(t)	, the L.T.	of $\int f(x)$	τ)dτis	5					CO	1- U	
	(a) $s F(s)-f(0)$ (b)) (b) $1/s F(s)$ (c) $\int f(\tau) d\tau$					(d) $1/s[F(s)-f(0)]$						
4.	Sampled frequency less than Nyquist rate is called									C	04-	App	
	(a) under sampling (b	o) over sampling	(c) critic	cal sam	pling		(d)	nyq	uist	samj	pling		
5.	Z[u(-n)] is									C	04-	App	
	(a) $-z/(z-1)$ (b) $1/z-2$	1	(c) 1/1-z				(d) z	z/z-1					
	PART - B (5 x 3 = 15 Marks)												
6.	A given system is char for linearity and stabili	•	differenti	al equa	ation;	Cheo	ck th	e sys	stem	C	02-A	pp	

- $\frac{d^{2} y(t)}{dt^{2}} \frac{dy(t)}{dt} 2 y(t) = x(t)$
- 7. Find harmonics and TFS coefficients of the following signals. CO2-App $x(t)=10 \cos^2(45 t-45^0)$

- 8. List and draw the basic elements for the block diagram representation of the CO1-U CT systems.
- 9. Determine the convolution sum of two sequences $x(n) = \{3, 2, 1, 2\}$ and $h(n) = \{1, 2, 1, 2\}$
- 10. State the advantages of Direct form II over Direct form I. CO4-App

$$PART - C (5 \times 16 = 80 \text{ Marks})$$

- 11. (a) Find whether the following signals are periodic, if periodic find CO2- App (16) the fundamental period i) $x[t] = \sin 2t$ ii) $x(t) = e^{-3t}$ iii) $4\cos 5\pi t$ iv) $x(n) = \sin 2\pi n + \sin 6\pi n$ Or
 - (b) Check whether the given signals are energy or power signal. CO2- App (16) i) $x(t) = A \cos \omega t$, -T < t < T ii) $x(n) = (1/3)^n u(n)$
- 12. (a) Obtain the trigonometric Fourier series for the half wave rectified CO3- App (16) Sine function of 't'.


(b) Consider a continuous-time LTI system described by CO3- App (16)

$$\frac{dy(t)}{dt} + 2y(t) = x(t)$$
using the Fourier transform, find the output
Response y(t) to each of the following input signals:

(i)
$$x(t) = \delta(t)$$
 (ii) $x(t) = e^{-t}u(t)$

0.

13. (a) In the circuit shown below, the switch is in the closed position for CO5- Ana (16) a long time before it is opened at t=0. Find the inductor current i(t) for t ≥0.

a) Find the impulse response of the circuit using Laplace transform.

b) Analyze the performance of the circuit by comparing their stability, causality and linearity conditions.

Or

- (b) Obtain the convolution of the given two signals using the CO5-Ana (16) convolution property of the Laplace transform and evaluate the results also with the conventional method of convolution. $x(t) = e^{-3t} u(t)$ and $y(t) = e^{-2t} u(t)$
- 14. (a) i) Find the DTFT of $x(n) = \{1,1,1,1,1,0,0\}$. ii) Find the convolution of $x_1(n) = \{1,2,0,1\}$, $x_2(n) = \{2,2,1,1\}$ Or
 - (b) Find the DTFT of the given signal $x(n) = a^{|n|}$ and plot magnitude (CO4- App (16)) and phase spectrum.
- 15. (a) Realize the Direct form I, Direct Form II, cascade and parallel CO6- App (16) structure for the given difference equation. Comment on the results obtained.
 y(n) 7y(n-1) + 12y(n-2) =x(n)+2 x(n-1)

Or

(b) Realize the Direct form I, Direct Form II, cascade and parallel CO6- App (16) structure for the given difference equation. Comment on the results obtained.

y(n) - 7y(n-1) + 12y(n-2) = x(n)+2 x(n-1)