C		Reg. No. :			
		Question Pape	er Code: 94402		
	B.E. /	B.Tech. DEGREE EX	XAMINATION, NOV	2024	
		Fourth S	emester		
]	Electronics and Comm	unication Engineering		
	19UEC402– EI	LECTROMAGNETIC F	IELDS AND TRANSM	ISSION LINES	J
		(Regula	ation 2019)		
Dur	ation: Three hours			Maximum: 1	00 Marks
		Answer ALI	L Questions		
		PART A - (5 x	1 = 5 Marks)		
1.	The product of E and	H gives	unit.		CO1-U
	(a) W/m ²	(b) V/m	(c) A/m	(d) m/A	
2.	Electromagnetic wav	es are produced by			CO1-U
	(a) static charge (l	o) accelerated charge	(c) moving charge	(d) charge	ed particle
3.	When the load imperturbation the load imper-	dance is not equal to o	characteristic impedar	nce of	CO2-U
	(a) Insertion	(b) Reflection	(c) both a and b	(d) None	of these
4.	The points of zero vo	ltage or current in the	standing waves is		CO2- U
	(a) Antinodes	(b) loops	(c) Nodes	(d) nor	ie
5.	Reflection results in_				CO2- U
	(a) Power loss	(b) Current loss	(c) Voltage loss	(d) Impeda	nce loss
		PART – B (5 x	3= 15 Marks)		
6.	State faradays law an	d Lenz law			CO1- U
7.	What is Brewster ang	,le?			CO1- U
8.	Mention the condition for stop band and pass band				CO2-U
9.	Define standing Wave ratio				CO2-U
10.	What are guided wav	es? Give examples			CO2-U

PART – C (5 x 16= 80 Marks)

11.	(a)	Derive the expression for the capacitance of a coaxial cable using Laplace's equation.(if b>a V=0 at r=b and V=V0 at r=a) Or	CO3- Ana	(16)
	(b)	(i) Derive the Maxwell equation for both integral and point form for time varying field.	CO3- Ana	(10)
		(ii) Derive Poisson and Laplace equation	CO3- Ana	(6)
12.	(a)	Derive the EM wave propagation parameters in Free space and also derive the expression for electric and magnetic field. Or	CO2-App	(16)
	(b)	Derive the Transmission and reflection coefficient of uniform plane waves	CO2- App	(16)
13.	(a)	Design a constant k low pass filter with suitable filter sections Or	CO3- App	(16)
	(b)	Design m-derived low pass filter having a cut off frequency of 5000Hz and design impedance of 600 ohms. The frequency of infinite attenuation is 1.25 fc	CO3- App	(16)
14.	(a)	Design a single stub match for a load of 150+j225 ohms for a 75 ohms line at 500 MHz using smith chart Or	CO5- Ana	(16)
	(b)	Derive the expression for single stub matching	CO5- Ana	(16)
15.	(a)	Derive the field equations for TE waves between parallel planes. Or	CO6- Ana	(16)
	(b)	Determine the solution of electric and magnetic fields of TE waves guided along rectangular waveguide.	CO6- Ana	(16)