С		Reg. No. :								
		Question Pap	er Code:	99402]					
B.E. / B.Tech. DEGREE EXAMINATION, NOV 2024										
Elective										
Electronics and Communication Engineering										
19UEC902- PRINCPILES OF ROBOTICS										
(Regulation 2019)										
Dura	tion: Three hours				Maxir	num: 100) Marks			
		Answer ALL	Questions							
PART A - $(5 \times 1 = 5 \text{ Marks})$										
1.	During reverse bias, a small current develops known as CO1-U									
	(a) temperature (b) pressure	(c) feedb	ack	(0	l)signal				
2.	The unit of linear acceleration is						CO2- U			
	(a) kg-m (b) m/s	(c) m/s20	t	(d) rad	/s22				
3.	The inertia matrix of a r	igid body or a link					CO3- U			
	(a) is always positive definite									
	(b)is always symmetric									
	(c)is an orthogonal matrix									
	(d) represents the mass distribution in 3D space									
4.	Which one is the oldest method of solving the find-path problem?						CO4- U			
	(a) Tangent Graph. (b)) Cell decomposition	(c) Visibi	ility Graph	n (d)	Voronoi	Diagram			
5.	What is necessity for a lot of sensible mobile robotics funaction					CO5- U				
	(a) Map discovery (b) Geomatric Maps	(c) Perce	ptul maps	(d)	Sensoria	ıl maps			
PART – B (5 x 3= 15 Marks)										
6.	What is a DDR? What is	s its advantages?					CO2 App			

7.	Poir	nt out the various types of joints	CO3 Ana						
8.	Whe	en Jacobian becomes singular?	CO5 U						
9.	Def	ine path.	CO3 U						
10.	Def	ine motion interpolation?	CO3 U						
	PART – C (5 x 16= 80 Marks)								
11.	(a)	Describe salient features of robot in different field applications Or	CO1-U	(16)					
	(b)	Discuss about micro machines in robotics	CO1-U	(16)					
12.	(a)	Derive the direct kinematics equation of PUMA 560 robot using D-H transformation matrix.	CO2- App	(16)					
	(b)	Derive the Denavit- Hartenberg representation of forward kinematic equations of robots	CO2- App	(16)					
13.	(a)	Enumerate with neat schematic diagram Cartesian space moments of a two degree of freedom robot. Or	CO2- App	(16)					
	(b)	Write the expressions for linear and angular velocity of a rigid body and also the linear velocity due to angular motion and combined angular and linear motion.	CO2- App	(16)					
14.	(a)	Describe in detail about the control of robot manipulators in joint space trajectories.	CO1- U	(16)					
	(b)	Describe about the various terminology involved in trajectory planning.	CO1- U	(16)					
15.	(a)	Analyze the various programming language available for programming Robotics. Also describes 1st and 2nd Generation robot programming languages	CO4- App	(16)					
	(b)	Compare weight, signal and delay commands in Robot programming	CO4- App	(16)					