_	-	~
4	ı	•
٧	ı	

Reg. No.:					

Question Paper Code: 95504

B.E./B.Tech. DEGREE EXAMINATION, NOV 2024

Fifth Semester

		Compute	er Science Engineering		
		19UCS504 - TH	IEORY OF COMPUTAT	ΓΙΟΝ	
		(R	Regulation 2019)		
Dur	ration: Three hours	S		Maximum: 1	00 Marks
		Ansv	ver ALL Questions		
		PART A	A - $(5 \times 1 = 5 \text{ Marks})$		
1.	of states in non-	deterministic finite a	rministic finite automator utomaton is Q . The max on that accepts L is	imum number	CO1- U
	(a) Q	(b) 2 Q	(c) 2 raise to pow	ver Q (d) 4 Q	
2.	Regular expressi	ion Φ^* is equivalent t	to		CO1- U
	(a) €	(b) Φ	(c) 0	(d) 1	
3.	Given the follow b }, S , P) with pr $S \rightarrow (T)$	oductions P:	ammar (CFG), G = ({S, '	Γ }, {(,), a,	CO1- U
	$T \rightarrow (S) \mid$ elements of $L(G)$		owing are in the language	e of G (i.e. are	
	(a) ((a))	(b) (b))	(c) a(b)	(d) b	
4.	The push down	automata indicate the	acceptance of input strir	ng in terms of	CO1- U
	(a) Final state	(b) Empty Stack	(c) Both (a) and (b)	(d) None of the	mentioned
5.	TM is a mathem	atical model of			CO1- U
	(a) Calculator	(b) Computer	(c) Compiler	(d) Interpo	reter
		PART -	- B (5 x 3= 15 Marks)		
6.	Construct a finit	e automata for the lar	$nguage L= \{ 0^n / n \mod 3 \}$	$=2,n\geq 0$	CO4- App

7. Write RE for CO1- U

- (i) All strings beginning with '11' and ending with 'ab'
- (ii) Set of all strings that end with '1' and has no substring '00'
- (ii)Set of all strings over {0,1} with 3 consecutive 1's.

8. Find the language of the grammar S->aSb | aAb , A->bAa , A->ba.

CO5- Ana

9. Define ID of PDA.

CO1- U

10. Design a TM for Zero function.

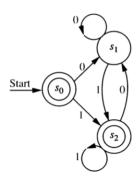
CO4- App

- 11. (a) (i) Design a DFA to accept strings of a's and b's having even no of CO4-App (6) a's and odd no of b's and to check whether the string w1=abaa is accepted or not.
 - (ii) Construct the equivalent DFA for the following NFA.

CO2-App (10)

	0	1			
->p	{p,q}	{p}			
q	{r,s}	{t}			
r	{p,r}	{t}			
*s	ф	ф			
*t •		ф			

Or


(b) (i) Convert the following ε -NFA to it's equivalent DFA

CO2- App (12)

	3	0	1	2
->q ₀	$\{q_1\}$	$\{q_0\}$	ф	ф
q_1	$\{q_2\}$	ф	$\{q_1\}$	ф
*q ₂	ф	ф	ф	$\{q_{2}\}$

- (ii) Construct NFA with ε , that end with string 11 for the set of all CO4-App (4) Strings $\{0,1\}$
- 12. (a) (i) Verify the following languages are regular or not using Pumping CO2-App (8) lemma.
 - (a) L={ $0^n 1^n / n >= 0$ }
 - (b) L={ WW^R / W is in {a,b}* }.
 - (ii) Construct a regular grammar that generates the language CO5-Ana accepted by this finite state automaton.

(8)

Or

- (b) Find the minimized DFA for the following regular expression (a/b)* CO2- App (16)abb.
- 13. (a) (i) Consider the following productions:

CO2- App (8)

 $S \rightarrow aB \mid bA$

 $A \rightarrow aS \mid bAA \mid a$

B->bS | aBB | b.

For the string aaabbabbba, find a leftmost derivation, rightmost derivation and draw derivation tree.

(ii) Show that the grammar S->a | abSb | aAb, ,A->bS | aAAb is ambiguous.

CO5-Ana

(8)

(10)

(6)

Or

(i) Convert the Grammar $G = (\{A1, A2, A3\}, \{a,b\}, P, A1\}$ into CO2- App Greibach Normal Form, where P consists of the following:

A1->A2A3,

A2->A3A1 | b,

A3->A1A2 | a.

(ii) Find a Grammar in Chomsky Normal Form equivalent to $S \rightarrow aAbB$;

CO2- App

A -> aA | a; B -> bB|b.

14. (a) (i) Construct a PDA for the language $L=\{a^mb^m|m>=0\}$

CO4- App (8)

(ii) Construct a PDA for the given grammar and check the validation CO5-Ana (8)of "010"

 $S \rightarrow A1B$

 $A \rightarrow 0A \mid \epsilon$

 $B \rightarrow 0B \mid 1B \mid \epsilon$

- (b) (i) Convert the PDA M=($\{q0,q1\},\{0,1\},\{X,Z0\},\delta,q0,Z0,\Phi$) into CO5-Ana (8) Grammar. Where δ is defined as
 - a. $\delta(q0,0,Z0) = (q1,XZ0)$
 - b. $\delta(q0,0,X) = (q1,XX)$
 - c. $\delta(q_{0,1}X) = (q_{1,\epsilon})$
 - d. $\delta(q1,1,X) = (q1, \epsilon)$
 - e. $\delta(q1, \epsilon, X) = (q1, \epsilon)$
 - f. $\delta(q1, \epsilon, Z0) = (q1, \epsilon)$
 - (ii) Prove that "If L is a context-sensitive language, then L is accepted by a linear bounded automaton".
- 15. (a) Design a Turing Machine M for f(x,y)=x*y and x,y are stored in CO4- App (16) the tape in the form $o^x 1 o^y 1$.

Or

(b) Construct a TM to perform reverse operation. CO4- App (16)