	Reg. No. :											
	Question Paper Code: 99215											
	B.E./B.Tech. DEGREE F	EXAN	AINA	ATIC)N, N	IOV	2024	4				
	Professio	onal I	Electi	ve								
	Computer Science and Engineering											
	19UCS915 - IM.	AGE	PRO	CES	SIN	G						
	(Régula	ations	s 20 1	9)								
Dura	ation: Three hours						N	laxir	num	: 100	Mai	ks
	Answer A	All Q	uesti	ons								
	PART A - $(10 \text{ x } 2 = 20 \text{ Marks})$											
1.	. Define sampling and quantization					C	01 -1	J				
2.	2. Find the RGB coordinate of a color at (0.25, 0.5, and 0.75) in CMY space.					C	01 -	App				
3.	3. What is the difference between spatial and frequency domains in filtering?					C	01-1	J				
4.	4. List the different types of spatial filters					C	01-1	J				
5.	5. How the spatial domain signal is converted into frequency domain?					C	01-1	J				
6	6 Write a matlab code for median filter.					C	01 -4	Арр				
7	7 What is image segmentation?				C	01-1	J					
8	8 Enumerate the steps in the region growing algorithm. CO1-					01-1	J					
9	9 What are the five morphological operations? CO1- U						J					
10	10 What are the advantages of morphological image processing? CO1- U						J					
	PART – B	(5 x	16=	30 M	larks)						
11.	(a) Use the following components R= convert into HSI component, CMY,	= 24, YIQ	G=	98 a	nd H	3=11	8 ar	nd	CO2	- Ap	р	(16)

Or

(b) Consider the two image subsets S1 and S2 shown below. For CO2 -App (16) V={1}, determine how many 4-connected, 8-connected,m-connected Components there are in S1 and S2. Are S1 and S2 adjacent?

	S_1					S	2		
0	0	0	0	0	0	0	1	1	0
1	0	0	1	0	0	1	0	0	1
1	0	0	1	0	1	1	0	0	0
0	0	1	1	1	0	0	1	1	1
0	0	1	1	1	0	0	1	1	1

12. (a) Consider the following image and perform different types of CO1-U (16) basic gray level transformation -Logarithmic(c=1 and c=L/log10(1+L) Power -low (Gamma=0.5)

Digital negative

Γ4	4	4	4	ן 4
3	4	5	4	3
3	5	5	5	3
3	4	5	4	3
L4	4	4	4	4 J

Or

(b) Obtain Histogram and Histogram equalization for a given image CO1-U (16) $(4 \times 4) - 4$ bit per pixel is given by

(\cdot)	_	_		-	(::)	
(1)	4	3	5	2	(11)	
	3	6	4	6		
	2	2	6	5		_
	7	6	4	1		

10	12	8	9
10	12	12	14
12	13	10	9
14	12	10	12

13. (a) Convert the given spatial domain image using Fourier transform CO2 -App (16) and perform Ideal low pass filter to smoothen the image choose D0 as 0.5. Show the step by step procedure for doing the same.

1	0	1	0		
1	0	1	0		
1	0	1	0		
1	0	1	0		
Or					

(b) Convert the given spatial domain image using Fourier transform CO2 -App (16) and perform Gaussian low pass filter to smoothen the image choose D0 as 0.5. Show the step by step procedure for doing the same.

1	0	1	0
1	0	1	0
1	0	1	0
1	0	1	0

14. (a) Construct the Huffman code for the given image

CO2- App (16)

4	4	4	4	ך 4	
3	4	5	4	3	
3	5	5	5	3	
3	4	5	4	3	
4	4	4	4	4 J	

Or

(b) Detect edge in the following image using strength (Magnitude) CO2- App (16) and direction of gradient. Use prewitt operator. Find an edge in horizontal direction.(Mx(x,y)=

-1	-	-1	-		
0		0	0	0	
1		1	1	1	
f(x,y)=				
0		30			60
5		32			62
10)	38			64

15. (a) Explain the morphological transform that uses morphological CO1-U (16)

99215

erosion operation for detecting a given pattern in an image

Or

(b) Explain about region filling for morphological processing with a CO1- U (16) suitable example