		Reg. No:												
									7					
	Question Paper Code: U4M26													
	B.E./B.Tech. DEGREE EXAMINATION, NOV 2024													
	Fourth Semester													
	Computer Science and Design													
	21UMA426-	- PROBABILIT	Y AN	ND ST	[AT]	[ST]	ICAI	L TE	CHN	JIQU	JES			
	(Common t	to Artificial Intel	lligen	nce an	d Da	ata S	Scien	ce Ei	ngin	eerir	ng)			
		(Re	gulat	tions	2021)								
Dura	ation: Three hours							N	/laxi	mun	n: 10	0 Ma	urks	
		Answ	ver A	11 Qu	estio	ns								
		PART A	- (10	x 1 =	10 1	Mar	ks)							
1.	A Continuous r.v has	a p.d.f $f(x) = \frac{1}{4} 0$	$\leq x \leq 4$	4, the	n val	ue o	of $E($	X ³)				C	01	Арр
	(a) 16	(b) 64			(c)	256					(d)	512		
2.	The mean of the rand	om variable is d	enote	ed by							CO6- U			
	(a) E(X)	(b) $E(X^2)$		(c) 0					(d) 1					
3.	Which of the following	ng distribution h	as eq	equal mean and Variance?							CO6 -U			-U
	a) Geometric	(b)Poisson		(c) Normal					(d) Binomial			.1		
4.	If $M_x(t) = (0.3 + 0.7e^t)$	0^{10} then value of	mea	n is									CO	6 -U
	(a) 30	(b) 0 .21			(c) 7	0					(d)	21		
5.	For a set of five bivar are 25 and 16 respect	iate data(x, y) co ively. The Karl I	ovaria Pears	ance and an co	is 10 effic	. Va ient	rianc of c	ce of orrel	x ar atioi	nd y n is		CC)3 –	App
	(a) 1	(b) -1			(c) 1	/2					(d)	1/4		
6.	The joint probability Estimate K =	density function	is f(x, y) =	= k, () < 2	x < 2	, 0 <	y <	1.		CC)3 –	App
	a) 4	b) -1/2			c) 1/	2					d)	5		
7.	Estimate and estimate	or are:										(CO 6	– U
	(a) Same	(b) Different			(c)N	Iaxi	mun	1			(d)	Min	imu	m

8.	If T is an unbiased est θ^2 .	imator for θ , then T ²	is a Estim	ator for	CO 6 – U				
	(a) unbiased	(b) biased	(c) Both (a) & (b)	(d) None of t	he above				
9.	The mean for t-test dis	stribution is			CO6- U				
	(a) $t = \frac{\overline{x}_1 - \mu}{s / \sqrt{n-1}}$	(b) $t = \frac{\overline{x}_1 + \mu}{s / \sqrt{n-1}}$	(c) $t = 0$	(d) None of t	he above				
10.	F-test is used to test for	or equality of			CO6- U				
	(a) Mean	(b) Variance	(c) ratio	(d) all the ab	ove				
		PART – B (5	x 2= 10 Marks)						
11.	(a) $t = \frac{\overline{x_1} - \mu}{s / \sqrt{n-1}}$ (b) $t = \frac{\overline{x_1} + \mu}{s / \sqrt{n-1}}$ (c) $t = 0$ (d) None of the above 0. F-test is used to test for equality of CO6- U (a) Mean (b) Variance (c) ratio (d) all the above PART - B (5 x 2= 10 Marks) 1. A coin is tossed twice; find the probability that there will appear atleast one CO1 - App tail? 2. If Moment generating function $M_x(t) = \frac{5}{5-t}$, find the variance value 3. Define Regression lines and also find the angle between these two lines? CO3 -U								
12.	2. If Moment generating function $M_x(t) = \frac{5}{5-t}$, find the variance value								
13.	Define Regression line	es and also find the a	ngle between these two	lines?	CO3 -U				
14.	I. Distinguish between point and interval estimate.								
15.	State the applications	of Chi-square distri	bution		CO6 -U				

$$PART - C (5 \times 16 = 80 \text{ Marks})$$

16. (a) (i) The joint probability mass function of (X,Y) is given by CO1 – App (8) P(x,y) = k(x+3y) x = 0, 1, 4 y = 1, 2, 3 Compute marginal distribution function, and conditional distribution

(ii) A RV X has the following distribution Compute Mean and CO1 - App (8) Variance

X	0	1	2	3	4	5	6	7	8			
P(X	а	3a	5a	7a	9a	11a	13a	15a	17a			
	Or											

- (b) (i) The cumulative distribution function of a random variable X is CO1 App (8) $F(x) = 1 - (1+x)e^{-x}, x > 0$. Find the probability density function of X, mean and variance.
 - (ii) If X and Y are two random variables with joint pdf CO1 App (8) f(x, y) = K(6-x-y), 0 < x < 2, 2 < y < 4

Compute (a) K (b) Marginal density function of x (c) E (X)

17. (a) (i) Compute the moment generating function of Poisson CO2 – App (8) distribution and hence Compute it's mean and variance. (ii) If X is a normal variate with mean 30 and variance 25. CO2 – App (8) Compute the probabilities that Compute $P(25 \le X \le 40), P(X \ge 36), P(|X - 34| > 3)$

Or

- (b) (i)The number of typing mistakes that a typist makes on a given CO2 –App (8) page has a Poisson distribution with a mean of 3 mistakes. What is the probability that she makes (i) Exactly 7 mistakes (ii) fewer than 4 mistakes and (iii) no mistakes on a given page?
 (ii) Compute the moment generating function of Binomial CO2 –App (8) distribution and hence Compute it's mean and variance
- 18. (a) (i) Obtain the rank Correlation coefficient for the following data: CO3 App (8)

Х	12	15	17	18	12	16	15	27	
Y	14	10	14	13	16	10	14	15	
Ohtoi	n tha C	orralati	00 000	fficient	for the	follow	ing haig	hta (in	CO2

(ii) Obtain the Correlation coefficient for the following heights (in CO3- App (8) inches) of fathers X and their sons Y.

Х	58	56	59	57	58	50	60	64		
Y	67	68	65	68	72	72	69	75		
Or										

(b) (i) Joint pdf of X and Y is

$$f(x, y) = \begin{cases} x + y & 0 \le x \le 1, \ 0 \le y \le 1 \\ 0 & elsewhere \end{cases}$$

Compute Regression Equations

(ii) If
$$\sigma_1 = 2$$
, $\sigma_2 = \sigma_3 = 3$, $r_{12} = 0.7$, $r_{23} = r_{31} = 0.6$ Compute CO3- App (8)
(i) $r_{23.1}$ (ii) $R_{1.23}$ (iii) $b_{13.2}$ (iv) $b_{12.3}$

19. (a) (i) A sample of size n is drawn from each of the four normal CO4 - App (8) populations which have the same variance σ^2 . The means of the four populations are

a + b + c, a + b - c, a - b + c and a - b - c. What are the MLE's for a, b, c and σ^2 .

(ii) In random sampling from normal population $N(\mu, \sigma^2)$, find the CO4- App (8) maximum likelihood estimators for

- (i) μ when σ^2 is known
- (ii) σ^2 when μ is known and
- (iii) The simultaneous estimation of μ and σ^2 .

CO3 - App

(8)

(b) (i) A manufacturer of ball pens claims that a certain pen he CO4 - App (8) manufactures has a mean writing life of 400 pages with a standard deviation of 20 pages. A purchasing agent selects a sample of 100 pens and puts them for test. The mean writing life for the sample was 390 pages. Should the purchasing agent reject the manufactures claim at 1% level?

(ii) Show that
$$\frac{\sum x_i \left[\sum x_i - 1\right]}{n(n-1)}$$
 is an unbiased estimate of θ^2 , for the CO4 – App (8)

sample $x_1, x_2, x_3 \cdots x_n$ drawn on X which takes the values 1 or 0 with respective probabilities θ and $(1 - \theta)$.

20. (a) (i) A certain injection administered to each of 12 patients resulted CO5 – Ana (8) in the following increases of blood pressure: 5, 2, 8, -1, 3, 0, 6, -2, 1, 5, 0, 4 can it be classified that the injection will be, in general, accompanied by an increase in BP?

(ii) The table gives the number of aircraft accidents that occurred CO5 - Ana (8) during the various days of the week. Test whether the accidents are uniformly distributed over the week.

Days	Mon	Tue	Wed	Thu	Fri					
No. of	8	12	9	14	17					
accidents										
Or										

(b) (i) Two researchers adopted different sampling techniques while CO5 – Ana (8) investigating the same group of students to find the number of students falling into different intelligence level. The results are as follows

Research	Below	Average	Above	Excellent
	Average		Average	
Х	40	33	25	2
Y	86	60	44	10

(ii) Two independent samples of sizes 9 and 7 from a normal CO5 - Ana (8) population had the following values of the variables.

			•	-					
Sample I	17	13	12	15	12	14	16	14	15
Sample II	16	19	13	16	18	13	15		

Do the estimates of the population variance differ significally at 5% level?