		Reg. No:											
		Ouestion Pa	ner ('ode		M2	27	7	1	1			
Question 1 aper Coue.0314127													
	B.E./B.Tech. DEGREE EXAMINATION, NOV 2024												
		Thi	rd Seme	ester									
	Computer Science and Business system												
21UMA327-DISCRETE MATHEMATICS AND CACULUS													
		(Regi	ulations	2021)								
Dura	ation: Three hours					М	axin	num	: 100	Maı	:ks		
Answer All Questions													
		PART A -	(10x 1 :	= 101	Mark	s)							
1.	The truth value " is a positive integ	If 71 is prime then 3 is er "	s even"	, The	e trut	h va	lue "	·1 >	3 and	13		CO	1-U
	(a) T,F	(b) F,T	(c) T,	Т			(d) F,F	7			
2.	$P \rightarrow \neg Q$ is equiva	lent to										CO	5- U
	(a) $\neg P \land Q$	(b) $P \wedge \neg Q$	(c) –($(P \wedge Q)$	<u>)</u>)			(d)	$P \lor$	$\neg Q$		
3.	If a bit string contains {0, 1} only, having length 5 has no more than 2 ones CO2- Ap in it. Then calculate how many such bit strings are possible?						App						
	(a)14	(b)12		(c)16	5				(d)	12			
4.	Calculate how many integers between 1 to 250 are divisible by 2 or 3 CO2						202-	App					
	(a) 41	(b)167	(c)83				(d) 1	74				
5.	A subgroup of the	e group $\{1, \omega, \omega^2\}$ when	re $\omega^3 =$	1 un	der th	ne m	ultip	olicat	tion i	S		CO	5- U
	(a) {1, <i>w</i> }	(b) $\{\omega, \omega^2\}$	(c)	$\{1,\omega^2\}$	2}				(d) N	lone	of th	e abo	ove
6.	The union of two	subgroup of G is a										CO	5- U
	(a) Subgroup	(b) semigroup	group (c) group			(d) Mo			Mon	oid			
7.	$\int_{0}^{\infty} e^{-x} x^4 dx$										C	04-	App
	(a) 4	(b) 4!		(c) 5					(d)	5!			

8.	$\int_{0}^{\infty} 6e$	$e^{-x}x^5dx$				CO4- <i>A</i>	Арр		
	(a)6		(b) 6!	(c)7!	(d) 5!				
9.	The	region of integrat	on of the integral	$\int_{0}^{1} \int_{0}^{x} f(x, y) dx dy $ is		CO	96- U		
	(a) s	square	(b) rectangle	(c) triangle	(d) circ	le			
10.	The	value of integral \int_{1}^{2}	$\int_{1}^{4} \frac{dxdy}{xy}$			CO5-	Арр		
	(a)]	log8	$(b)(\log 2)^2$	$(c)\log 6$	(d) None of the	ne above	e,		
			PART – B	(5 x 2= 10Marks)					
11.	Compute PDNF for $(P \lor Q)$						CO1- App		
12.	In h arra	ow many ways can nged	n letters of the wor	rd "THUNAIEZHUTHU"	' be	CO2-	App		
13.	For a Group $G = \{1, -1, -i, i\}$ under multiplication, Find order of all elements CO3- Apple CO3-								
14.	Con	npute y_{25} if $y = \frac{1}{2}$	$\frac{1}{x}$			CO4-	App		
15.	Solv	$\int_{00}^{12} \int_{00}^{2} x^2 y^2 dy dx$				CO5-	App		
			PART –	C (5 x 16= 80Marks)					
16.	(a)	(i) Calculate PC	NF and PDNF for	$(P \land \neg Q) \lor (P \land R) \lor (Q \land R)$	R) CO1 -	App	(8)		
		(ii) Using the rule $P \rightarrow (Q \rightarrow V), -$	es of inference der $U \lor P, Q \Rightarrow U \to ($	rive & using CP Rule. $V \wedge P$)	C01 -	-App	(8)		
			Or						
	(b)	(i) Prove the follo $P \rightarrow (Q \land R), (Q \land R)$	owing by Indirect $(A \otimes S) \rightarrow U, P \lor S \Rightarrow$	Method.	CO1 ·	-App	(8)		
		$(::) \mathbf{C}1 \dots \mathbf{A} \mathbf{A} \mathbf{A}$	• "	4 1			(0)		

(ii) Show that the premises "one student in this class knows how CO1 -App (8) to write programs in JAVA" and "Everyone who knows how to write programs in JAVA can get a high- paying jop" imply the conclusion "some one in this class can get high paying job

17.	(a)	(i) Using mathematical induction show that	CO2 -App	(8)
		$n^{3} + (n+1)^{3} + (n+2)^{3}$ is a multiple of 9.		
		(ii) Solve $a_n - 4a_{n-1} + 4a_{n-2} = 2^n, a_0 = 1, a_1 = 1$.	CO2 -App	(8)
		Or		
	(b)	(i) Calculate the number of positive integers not exceeding 1200 thatare divisible by 2,3,5 or by 7	CO2 -App	(8)
		(ii) Using generating functions Solve $a_n = 3a_{n-1} + 5^n$, $a_0 = 4$	CO2 -App	(8)
18.	(a)	(i) Let G be a finite group of order 'n' and H be any subgroup of G . Then Show that the order of H divides the order of G. (i.e) $O(H) / O(G)$	CO3- App	(8)
		(ii) Show that $(Q^+,*)$ is ababelian Group. Where * defined as $a*b=\frac{ab}{2}$ where $a, b\in Q^+$	CO3- App	(8)
		Or		
	(b)	$S = Q \times Q$, such that binary operation defined by (a,b)*(x,y) = (ax,ay+b)	CO3- App	(16)
		(i) Prove that (S, *) is a semi group		
		(ii). Is it commutative and calculate the value of $(2,4)^*(1,5)$		
		(iii) Find the identity Element		
		(iv) Find the inverse of (2,3)*(8,6) and (0,2)*(3,5)		
19.	(a)	(i) If $y = a\cos(\log x) + b\sin(\log x)$ Show that $x^2y_2 + xy_1 + y = 0$	CO4-App	(8)
		(ii) Compute the value of a,b,c if $\lim_{x \to 0} \frac{ae^x - be^{-x} - cx}{x - \sin x} = 4$	CO4-App	(8)
		Or		
	(b)	(i) Compute $\int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + \sqrt{\tan x}}$	CO4-App	(8)

(ii) Evaluate
$$\lim_{x \to 0} \frac{xe^x - \log(1+x)}{x^2}$$
 CO4-App (8)

U3M27

20. (a) (i) Find the volume of the tetrahedron bounded by CO5- App (8) 6x + 4y + z = 12, x = 0, y = 0, z = 0.(ii) Compute the area between the parabola $y^2 = x$ and $x^2 = y$ CO5- App (8) Or (b) (i) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}-y^2} \int_{0}^{\sqrt{1-x^2-y^2}} \frac{dxdydz}{\sqrt{1-x^2-y^2-z^2}}$ CO5- App (8)

(ii) Change the order of integration and hence evaluate CO5- App (8)

$$\int_{0}^{a} \int_{a-\sqrt{a^{2}-y^{2}}}^{a+\sqrt{a^{2}-y^{2}}} xydxdy$$