					1		1	,			
	1	Reg. No. :									
		Question Pa	per Cod	le: R2	2M0	9					
	B.E./B.Tech. I	DEGREE EXA	AMINATI(ON, NO	OV 20)24					
		Second Se	emester								
	Comput	ter Science and	d Business	Syster	ns						
	R21UMA	A209- STATIS	STICAL M	ЕТНО	DS						
		(Regulation	ıs R2021)								
	(St	atistical table t	o be provid	ded)							
Dur	ration: Three hours						Maxi	mun	n: 100	Э Ма	rks
		Answer ALL	Questions								
	PA	ART A - (10 x	1 = 10 Mag	rks)							
1	What must we include when report	ing an ANOV	A?						(CO6	– U
	(a) Standard deviations	(b)) Means								
	(c) Degrees of freedom	(d)	All of the	se							
2	In one-way ANOVA, given SSB =	2580, SSE =1	656, k = 4	n = 2	0 the	n the	value	of	CC) 1 – <i>1</i>	App

1	What must we include	de when reporting an Al	NOVA?		CO6 – U
	(a) Standard deviation	ons	(b) Means		
	(c) Degrees of freedo	om	(d) All of these		
2	In one-way ANOVA	A, given $SSB = 2580$, SS	SE = 1656, $k = 4$, $n = 20$ th	nen the value of	CO1 – App
	F is	·			
	(a) 7.3	(b) 8.3	(c) 9.3	(d) 10.3	
3	Bias of an estimator	can be			CO6 –U
	(a) Negative	(b)Positive	(c) Zero	(d) Both (a)	& (b)
4	Estimate and estimat	tor are:			CO6–U
	(a) Same	(b)Different	(c)Maximum	(d) Minimun	ı
5	The standard error of	f the proportion $p = 0.5$	and $n = 15$.		CO3 –App
	(a) 0.234	(b) - 0.234	(c)0.129	(d) - 0.129	
6	Which of the following	ing test must be two – s	ided?		CO6 –U
	(a) Sign test		(b)Wilcoxon signed rar	nk test	
	(c) Kruskal – Wallis	test	(d) Runs test		
7	A complete cycle pa	sses through:			CO6 –U
	(a) Two stages	(b) Three stages	(c)Four stages	(d) Difficult	to tell
8	Secular trend can be	measured by	·		CO4–App
	(a) Two methods	(b) Three methods (co	e) Four methods	(d) Five meth	nods

9 Command lines entered at the console are limited to about _____ CO6-U bytes

(a) 4095

(b) 4096

(c) 4097

(d) 4098

10 code is used to run linear regression model in R. CO6-U

(a) linear.model()

(b) sum()

(c) lm()

(d) None of the above

PART - B (5 x 2= 10 Marks)

What is the aim of design of experiments? 11

CO6 -U

Explain: Factorization Theorem. 12

CO6 -U

Find the standard error of the proportion p = 0.5 and n = 15. 13

CO3 -App

State the two normal equations used in fitting a straight line. 14

CO6 -U

15 Explain what is t-tests in R? CO5-U

Treatment 1

24

35

(a) Analyze the following data using 2-way ANOVA classification: 16

CO1 – Ana (16)

Treatment 2	1	2	3
1	30	26	38
2	24	29	28

33

4 36 31 30

5 27 35 33

Or

(b) Analyse the following is a Three way classification of a design

3

CO1 – Ana (16)

A 12	D20	C16	B10
D18	A14	B11	C14
B12	C15	D19	A13
B16	C15	D19	A13

17 (a) A random sample X_1 , X_2 and X_3 of size 3 from a population with mean μ CO2-App and variance σ^2 . T_1 , T_2 , T_3 are the estimators used to estimate mean μ ,

$$T_1 = X_1 + X_2 - X_3, T_2 = 2X_1 + 3X_3 - 4X_2 & T_3 = \frac{1}{3}(\lambda X_1 + X_2 + X_3)$$

- (i) Are T_1 and T_2 unbiased estimators?
- (ii) Find the value of λ such that T_3 is unbiased estimator for μ .
- (iii) With this value of λ is T_3 a consistent estimator?
- (iv) Which is the best estimator?

Or

- (b) In random sampling from normal population $N(\mu, \sigma^2)$, find the maximum CO2-App likelihood estimators for
 - (i) μ when σ^2 is known
 - (ii) σ^2 when μ is known and
 - (iii) The simultaneous estimation of μ and σ^2 .
- 18 (a) Most people believe that managerial produces better interpersonal CO3 -App relationships between a manager and her employees. The quill corporation has the following data matching years of experience on the part of the manager with the number of grievances field last year by the employees reporting to that manager. At the 5% level of significance, does the rank correlation between these two suggest that experience improves relationships?

Age of manager	3	4	4	2	5	6	4	3	4	3
	2	3	2	9	6	2	5	9	0	5
No. of	5	2	4	4	3	2	4	5	4	6
grievances										

(b) A consumer panel tested 9 marks microwave ovens for overall quality. CO3 -App (16) The ranks assigned by the panel and the suggested retail prices were as follows:

Manufactures	1	2	3	4	5	6	7	8	9
Panel rating	6	9	2	8	5	1	7	4	3
Suggested	48	39	57	55	51	54	40	46	42
price	0	5	5	0	0	5	0	5	0

Is there a significantrank correlation relationship between the quality and the price of a microwave oven at 5%?

(16)

19 (a) Compute the second degree polynomial equation for the following data: CO4-App (16)

Year	1976	197	197	197	198	198	198	198	1984
		7	8	9	0	1	2	3	
Sales	50	65	70	85	82	75	65	90	95

Or

(b) Compute the seasonal indices by ratio to moving average method for the CO4-App following series:

Year	I	II	III	IV
1963	3.5	3.9	3.4	3.6
1964	3.5	4.1	3.7	4.0
1965	3.5	3.9	3.7	4.2
1966	4.0	4.6	3.8	4.5
1967	4.1	4.4	4.2	4.5

20 (a) Write a R program to create a 5×4 matrix, 3×3 matrix with labels and CO5-App (16) . fill the matrix by rows and 2×2 matrix with labels and fill the matrix by columns.

Or

(b) Write a R program to print the numbers from 1 to 50 and print "Fizz" for CO5-App multiples of 3, print "Buzz" for multiples of 5, and print "FizzBuzz" for multiples of both.