A	Re	eg. No. :												
		Question	n Pa	ipei	: Co	de:	U4	C00	5					
	B.E. / B.	Fech. DEGRI	EE E	XAN	AINA	ATIC)N, 1	VOV	202	4				
			urth			_	,							
	С	omputer Scie	nce a	ind E	Busin	ess S	Syste	ms						
	21UCB406- I	•					•		SEA	RCH	H			
		(Re	gulat	ions	2021	l)								
Dura	ation: Three hours								l	Maxi	mun	n: 10	0 Ma	arks
		Answ	er A	ll Qu	estic	ons								
		PART A -	· (10	x 1 =	= 10	Marl	(s)							
1.	In solving an LPP by the with equality type constr	-	netho	od		_ va	riabl	e is	asso	ciate	d		CO	6- U
	(a) Slack	(b) Surplus			(c)	Art	ificia	ıl		(d)	Bas	ic		
2.	The dual of the dual is												CO	5- U
	(a) dual	(b)Primal			(c))L.P.	.P				(d) Ec	qual	
3.	Degeneracy in $m \times n$ transformed cells is		probl	em	occu	rs w	hen	the 1	numl	ber o	of		CO	6- U
	(a) equal,m+n-1	(b) Less,m-	⊦n-1		(c)) Les	ss,m-	⊦n+1		(d)) moi	re,m-	⊦n-1	
4.	An assignment problem	n is a comp	letel	у	- for	rm o	of a	trar	nspor	tatio	n		CO'	
	problem.	daganarata	(~) Fac	aible						(4) 1	Man		5-U
5	(a) Degenerate (b) Nor	•	(C	ј геа	asible	;					(a) I	NON	feasi	
5.	Minimum inventory equa			(-)	0.6-2	ater	to al.		۲L)	لـ معر (105	to -1		5- U
C		eorder level) Saf	2			(d) red	uce s	tock		с т т
6.	An approximate percenta	-		i IIrn							(1) 10		5- U
7	(a) 5 to 10%	(b) 20 to 25			(c) /0-	75%)			()	a) 10)-20%	
7.	In $M/M/C$, The effective		S											6- U
	(a) λ	(b) ^{<i>l</i>}			(c)) ^{µ'}					(d) λ	μ'	

8. For a model (M/M/1): (∞ /FCFS) The arrival rate is 3 per hour and service CO4- App rate is 5 per hour then L_s

	(a) 3.5	(b) 2.5	(c) 4.5	(d) 1.5
9.		e point of intersection of p		CO6- U
	(a) saddle point		t (c)Dominance poi	
10.			ers to play strategies	
			(c) no strategies	
	(.)		$5 \ge 2 = 10 \text{Marks}$	
11.	When can we u	se the graphical method for		CO6- U
12.		• •	niques, is not made use for	
10	transportation p	problems.	-	-
13.	- ·	- ·	f an item. The purchase pr er order. Carrying cost 12	
14	inventory value	. Find the EOQ.		
14.			rrival rate is 3 per hour an odel, compute the value o	••
15.		dle point in the following		CO5-App
	B		0	
	$A\begin{bmatrix} 6 & 2 & 3 \\ 2 & -1 & -3 \\ 5 & 4 & 5 \end{bmatrix}$			
	5 4 5			
		PART – C	C (5 x 16= 80Marks)	
16.		tion using Two-Phase me	thod.	CO1 App (16)
		$e Z = 3x_1 + 5x_2$		
	•	the constraints		
	$2x_1 + 8x_2$			
	$3x_1 + 4x_2$ $X_1, x_2 \ge 0$	≥ 30		
	$\Lambda_1, \Lambda_2 \leq 0$	OR		
	(b) Find solu	tion using graphical simpl	ex method	CO1 App (16)
		$e Z = 15X_1 + 10X_2$		(10)
		the constraints		
	$4X_1 + 6X_1$			
	$3X_1 \leq 18$	0		
	$5X_2 \leq 200$	0		
	and X ₁ ,X	$_2 \ge 0$		

17. (a) A department has five employees with five jobs to be performed. CO2 App (16) The time (in hours) each men will take to perform each job is given in the effectiveness matrix.

	Em	Employees									
		Ι	II	III	IV	V					
	Α	10	5	13	15	16					
	В	3	9	18	13	6					
Jobs	С	10	7	2	2	2					
	D	7	11	9	7	12					
	Е	7	9	10	4	12					

How should the jobs be allocated, one per employee, so as to minimize the total man-hours?

OR

(b) A travelling salesman, named Magan Shah plans to visit five CO2 App (16) cities 1, 2, 3, 4 and 5. The travel time (in hours) between these cities is shown below.

To city											
		1	2	3	4	5					
	1	Х	5	8	4	5					
	2	5	X	7	4	5					
From	3	8	7	Х	8	6					
city	4	4	4	8	X	8					
	5	5	5	6	8	Х					

How should he schedule his touring plan in order to minimize the total travel time, if he visits each city once a week?

18. (a) The contractor has to supply 10,000 bearings per month to an CO3 App (16) automobile manufacture. He finds that when he starts a production run he can produce 25,000 bearings per month. The cost of holding a bearing in stock for one year is Rs.180. How frequently should the production run be made?

OR

(b) The probability distribution of the demand for a certain item is as CO3 App (16)follows:

Monthly	0	1	2	3	4	5	6
Sales							
Probabilit	0.01	0.06	0.25	0.35	0.20	0.03	0.10
у							

The cost of carrying inventory is Rs.30 per unit per month and the cost of unit short is Rs.70 per month. Determine the optimum stock level which will minimize the total expected cost.

19. (a)

(8)

(i) Customers arrive at one man barber shop according to a CO4- Ana Poisson fashion at a rate of 12 minutes, barber services customers according to an exponential distribution with mean of 10 minutes. Identify the queueing model, Calculate the following,

i) What is the probability that the shop is empty?

ii) What is the expected number of customers in the shop and in the queue?

iii) Find the average time a customer spends in the shop Ws

iv) Find the average number of customers in the queue Wq

(ii) Patients arrive at a clinic according to Poisson distribution at a CO4-Ana (8) rate of 30 patients per hour. The waiting room does not accommodate more than 14 patients. Examination time per patient is exponential with mean rate of 20 per hour. Identify the queueing model, Calculate the following,

i) Find the effective arrival rate at the clinic.

ii) What is the probability that an arriving patient will not wait?

iii) What is the expected waiting time until a patient is discharged from

the clinic?

OR

(b) There are three typists in an office. Each typist can type an CO4-Ana (16)average of 6 letters per hour. If letters arrive for being typed at the rate of 15 letters per hour, Identify the queueing model, Calculate the following,

(i) What fraction of time all the typists will be busy?

(ii) What is the average number of letters waiting to be typed?

(iii) Find the average waiting time of a customer in the system and in the system and in the queue?

(iv) What fraction of the idle of the office?

		Player B			
		B1	B2	B3	B4
	A1	3	2	4	0
Dlavor A	A2	3	4	2	4
Player A	A3	4	2	4	0
	A4	0	4	0	8
			(Or	

(b) (i) The cost of a machine is Rs.6100 and its scrap value is CO5- App (8) Rs.100. The maintenance costs found from experience are as follows: When should the machine be replaced?

Year	1	2	3	4	5	6	7	8
Main. Cost	100	250	400	600	900	120	160	200

(ii) Using graphical method, solve the rectangular game payoff CO5- App (8)

matrix for player A is
$$\begin{pmatrix} 2 & -1 & 5 & -2 & 6 \\ -2 & 4 & -3 & 1 & 0 \end{pmatrix}$$

U4C06

U4C06

U4C06