Α	Reg. No. :						
Question Paper Code: 94C05							
B.E. / B.Tech. DEGREE EXAMINATION, NOV 2024							
	Fourth	Semester					
	Computer Science	and Business S	Systems				
190	JCB405 - Formal Lang	guages And Au	tomata Th	eory			
(Regulations 2019)							
Duration: Three hours				Maxin	num: 1	00 Marks	
Answer ALL Questions							
PART A - (10 x 1 = 10 Marks)							
1. There are	_ tuples in finite state r	nachine.				CO1- U	
(a) 4	(b) 5	(c) 6		(d)	unlimi	ted	
2. Which of the Language: {0,01}	following does not	represents th	ne given	langu	age?	CO2- Ap	
(a) 0+01	(b) {0} U {01}	(c) $\{0\}$ U	J {0}{1}	(d)	{0} ^	{01}	
3. The Grammar can definition, what doe	be defined as: G=(Ves S represents?	√, ∑, p, S) In	n the give	en		CO1- U	
(a) Accepting State	(b) Starting Variab	ole (c) Sensit	ive Gramı	nar (e	d) Nor	ne of these	
4. Which among the tuple?	following is not a par	t of the Conte	xt free gra	ammar		CO2- Ap	
(a) End symbol	(b) Start symbol	(c) Variat	ole	(d)	Produ	ction	
5. Which of the opera	tions are eligible in PD	DA?				CO2- Ap	
(a) Push	(b) Delete	(c) Insert		(d) A	Add		
6. which of the foll context to PDA?	owing correctly recog	gnize the sym	nbol ' -'	in		CO2- Ap	
(a) Moves	(b) transition function	(c) or/not sys	mbol (d)) none c	of the r	mentioned	
7. The value of n if tu	ring machine is defined	d using n-tuple	S			CO1- U	
(a) 6	(b) 7 (c)	8	(d) 5				

8.	If T1 and T2 are two turing machines. The composite can be represented using the expression:						CO1- U	
	(a) T1T2	(b) T1 U T2		(c) T1	X T2	(d) None	of the mentio	ned
9.	Which of the prob	lems are unsolv	able?					CO1- U
	(a) Halting proble	m						
	(b) Boolean Satisf	iability problem	L					
	(c) Halting problem & Boolean Satisfiability problem							
	(d) None of the m	entioned						
10.	If a problem has a	n algorithm to a	nswer it	t. we ca	all it			CO1- U
	(a) decidable	(b) solved			ognizable		one of the me	
					10 Marks)			
11.	Define Finite Aut	tomata and Tran	sition d	iagram	•			CO1- U
12.							CO1- U	
13.						CO1- U		
14.	Define Turing Ma	_						CO1- U
15.	Define Rice Theorem							CO1- U
	PART – C (5 x 16= 80 Marks)							
16.		the Epsilon NFA bb and (0+1)		-	-	n	CO2- App	(16)
	(b) Construct D	FA for NFA-Ep		ven be	low		CO2- App	(16)
		a	b	С	Epsilon			
		$(\text{Start}) p \{p\}$		{r}	ϕ	-		
		q{q(Final)r{r		ф {p}	{p} {q}			
		(*)- (*)	T	(1)		J		
17.		ne leftmost and	-	lost dei	rivation and	l draw the	CO2- App	(16)
	parse tree f	or 00101 and 1	101					

Given the productions are $S\to\!A1B^-$, $A\to\!0A/~\epsilon^-$, $B\!-\!\!>\!\!0B~/$ 1B / ϵ and Explain the Types of Grammar .

Or

	(b)	(i) Convert the following Grammar in to GNF S->AB	CO2- App	(12)
		A->BS / b B->SA / a (ii) Find CNF for the following Grammar S->aAbB A->aA /a B->bB / b	CO2- App	(4)
18.	(a)	(i) Construct PDA equivalent for the following grammar given	CO2- App	(8)
		below E -> E+E / E*E / a (ii) Show that the language L= $\{a^nb^nc^n d^n/n >=0\}$ is not a Context Free Language	CO2- App	(8)
	(b)	Or (i) Construct PDA equivalent for the following grammar given below	CO2- App	(8)
		S-> aAA A->aS / bS /a (ii) Construct PDA to accept the Language $L=\{WCW^R / W=\{0,1\}^*\}$	CO2- App	(8)
19.	(a)	Explain Programming Techniques for Turing Machine Construction in Detail. Or	CO1- U	(16)
	(b)	Explain Multi head and Multi tape Turing machine in detail.	CO1- U	(16)
20.	(a)	Explain Universal Turing Machine in detail. Or	CO1- U	(16)
	(b)	Explain applications of Finite Automata in detail.	CO1- U	(16)