A		Reg. No. :											
	[Question 1	Paper	Code	: R 1	IM()4						
B.E./B.Tech. DEGREE EXAMINATION, NOV/DEC 2024													
	First Semester												
	Computer Science and Business Systems												
R21UMA104- DISCRETE STRUCTURES AND ANALYSIS													
(Regulations R2021)													
(Statistical tables may be permitted)													
Dura	tion: Three hours							Max	ximu	ım: 1	00 N	/lark	S
Answer ALL Questions													
	PART A - $(10 \text{ x } 1 = 10 \text{ Marks})$												
1.	Let P: I am in Chenna	i.; Q: I love cri	cket.; th	en p →	• Q							CC	96-U
	(a) If I am in Chennai then I love cricket			(ł	(b) If I love cricket then I am in Chennai								
	(c) I am not in Chennai			(d) I love cricket									
2.	$(Q \vee \neg P)$ is a											CC	96-U
	(a) Contradiction	(b)Tautology	/	(0	c) Coi	nting	ency	7	(d)	PDN	F		
3.	How many ways can letters of the word "SMART" be arranged CO2- A						App						
	(a) 55	(b)66		(0	:)77				(d)	120			
4.	The particular integral	of $a_n - 4a_{n-1}$	$+7a_{n-2}$	= 12							С	02-	App
	(a) 4	(b)3		(0	:)7			(0	ł) 0				
5.	(z, .) is											CO	6- U
	(a) Monaid	(b) Semigrou	ıp	(0	c) Ab	elian	Gro	up		((d) (Broup)
6.	The inverse of the element	ment [3] in a gr	oup (Z ₅	;,⊕ ₅)							C	04-	App
	(a) [2]	(b) [4]		(0	:)[3]			((d) [1]			

7. The value of

7.	The value of			CO4- App				
	$\lim_{x \to 0} \frac{\sin 2x}{2x}$							
	(a) 4	(b) 2	(c)1	(d) None				
8.	$\int_{2}^{6} \frac{dx}{x}$			CO4- App				
	(a) log 4	(b) log 6	(c)log 8	(d) log 3				
9.	The value of integral \int_{1}^{b}	CO4- App						
	(a) loga + logb	(b)log a	(c)log b	(d) log a log b				
10.	The value of integral \int_{0}^{1}	CO5- App						
	(a) 10	(b) 9	(c) 7	(d) 12				
		PART – B (5 x 2=	10Marks)					
11.	Define proposition.			CO1 - App				
12.	Derive the complementary function of $a_n + 2a_{n-1} + a_{n-2} = 25$ CO							
13.	Define Abelian Group and give an example.							
14.	Evaluate: The value of	CO4 – App						
	$\lim_{\theta \to 0} \left(\frac{\tan \theta}{\theta} \right)$							
15.	Solve			CO5 – App				
	$\int_{0}^{1} \int_{1}^{2} x(x+y) dy dx$							
PART – C (5 x 16= 80Marks)								
16.	(a) (i) Calculate PC	NF and PDNF for $(\neg P \rightarrow$	$R) \land (Q \leftrightarrow P)$	CO1 – App (8)				
	(ii) Using the $P \rightarrow (Q \rightarrow S), \neg$	rules of inference deriv $R \lor P, Q \Rightarrow R \to S$	ve & using CP Ru	ule. CO1 – App (8)				

	(b)	(i) Prove the following by Indirect method.	CO1 – App	(8)
		$(x)(P(x) \lor Q(x)) \Rightarrow (x)P(x) \lor (\exists x)Q(x)$		
		(ii) Show that the premises "one student in this class knows how to write programs in JAVA" and "Everyone who knows how to write programs in JAVA can get a high- paying job" imply the conclusion "someone in this class can get high paying job.	CO1 – App	(8)
17.	(a)	(i) Calculate the number of positive integers not exceeding 1200 that are divisible by 2,3,5 or by 7	CO2 –App	(8)
		(ii) Solve $a_n - 4a_{n-1} + 4a_{n-2} = 2^n$, $a_0 = 11$, $a_1 = 15$	CO2 –App	(8)
	(b)	(i) How many bit of strings of length 8 contain (i) exactly four 1's(a) at most four 1's (b) atleast four 1's (c) an equal number of 0's and 1's?	CO2 –App	(8)
		(ii) Using generating functions Solve $a_n = 6a_{n-1} + 2^n$, $a_0 = 5$	CO2 –App	(8)
18.	(a)	(i) Let G and G' be any two groups with identities e and e' respectively. If $f: G \to G'$ be a homomorphism. Then kerf is a normal subgroup	CO3 –U	(8)
		(ii) A group G is abelian iff $(a * b)^2 = a^2 * b^2$	CO3 –U	(8)
		Or		
	(b)	(i) A non-empty subset H of a group (G,*) is a subgroup if only if $a * b^{-1} \in H$ for all $a, b \in H$	CO3 –U	(8)
		(ii) Prove that intersection of two subgroup is also a subgroup of G	CO3 –U	(8)
19.	(a)	(i) If $y = a \cos(\log x) + b \sin(\log x)$ Show that $x^2 y_1 + x y_1 + y = 0$	CO4 –App	(8)
		(ii) Evaluate:	CO4 –App	(8)
		$\lim_{t \to 1} \left(\frac{t^4 - 1}{t^3 - 1} \right)$		

Or

(b) (i) Compute
$$\int_0^{\frac{\pi}{2}} \frac{x}{\sin x + \cos x} dx$$
 CO4 – App (8)

(ii) Compute
$$\int_0^{\frac{\pi}{2}} \log(\cot x) dx$$
 CO4 – App (8)

20. (a) Change the order of integration and hence evaluate
$$\int_{0}^{4} \int_{\frac{x^{2}}{4}}^{2\sqrt{x}} x dx dy$$
 (16)

Or

(b) Using the Triple integration, compute the volume of the Sphere CO5 –App (16) $x^2 + y^2 + z^2 = a^2$