A		Reg. No.:														
Question Paper Code: R1M04																
B.E./B.Tech. DEGREE EXAMINATION, NOV 2024																
First Semester																
Computer Science and Business systems																
R21UMA104- DISCRETE STRUCTURE AND ANALYSIS																
(Regulations R2021)																
Duration: Three hours						Maximum: 100 Mar										
Answer ALL Questions																
PART A - $(10 \times 1 = 10 \text{ Marks})$																
1.	If A is any statement, then which of the following is a tautology?										CO6- U					
	(a) $A \wedge F$	(b) $A \vee F$	$A \lor F$ (c) $A \lor \neg A$							(d) $A \wedge T$						
2.	A compound proposition that is neither a tautology nor a contradiction is called a											C	01 - U			
	(a) Contingency	(b) Tautolog	gy		(c	c) Co	ntrac	dictio	n		(d) l	Equi	valen	ice		
3.	$8^n - 3^n$ is divisible by										CO2	- App				
	(a) 8	(b) 3			(c	2) 24					(d) :	5				
4.	The particular integral of $a_n + 6a_{n-1} + 8a_{n-2} = 45$												CO ₂	- App		
	(a) 4	(b) 3			(c) 7						(d) 0					
5.	A trivial subgroup co	a trivial subgroup consists of								C)3- L					

(c) Inverse element

(c)group

(c) 16

(d) Ring

(d) 24

(d) Monoid

CO3-U

CO4- App

(a) Identity element

(a) Subgroup

(a) 8

(b) Coset

(b) Semigroup

The intersection of two subgroup of a group G is a

(b) 3

CO4- App (a) log 4 (b) log 6 (c) log 8 (d) log 3 The value of integral $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dx dy dz$ is equal to CO5- App (b) 3 (c) 4 (d) 6(a) 2 The value of integral $\int_{0}^{b} \int_{0}^{a} \frac{dxdy}{xy}$ CO5- App (a) log a + log b(b) *log a* (c) *log b* (d) $log \ a \ log \ b$ PART - B (5 x 2= 10 Marks) Derive s from the premises $P \vee Q$, $Q \rightarrow S$ and $\neg P$ CO1-App Compute the particular solution of the recurrence relation $a_n - 5a_{n-2} = 8n$. CO2-App 13. For a Group $G = \{1, -1, -i, i\}$ under multiplication, Find order of all elements CO₃-App Compute y_2 if $x = \cos t$, $y = \sin t$ CO4-App 15. Solve $\iint_{0} x(x+y) dy dx$ CO4-App $PART - C (5 \times 16 = 80 \text{ Marks})$ 16. (a) (i) Calculate PCNF and PDNF for $\neg ((P \lor Q) \land R) \land (P \lor R))$ CO1-App (8)(ii) Using the rules of inference derive & using CP Rule. CO1-App (8) $P \to (Q \to R), \ Q \to (R \to S) \Rightarrow P \to (Q \to S)$ Or (b) (i) Prove that following Premises inconsistent: CO1-App (8) If Raj misses many classes through illness than he fails high school. If Raj fails high school then he is uneducated. If Raj reads a lot of books then he is not uneducated. Raj misses many classes through illness and reads a lot of books. (ii) Prove the following by Indirect method. CO1-App (8) $(x)(P(x) \lor Q(x)) \Rightarrow (x)P(x) \lor (\exists x)Q(x)$ 17. (a) (i) Using mathematical induction show that CO2-App (8) $n^{3} + (n+1)^{3} + (n+2)^{3}$ is a multiple of 9. CO2-App (8)(ii) Solve $a_n - 8a_{n-1} + 16a_{n-2} = 4^n$, $a_0 = 2$, $a_1 = 8$

2

Or

(b) (i) Using generating functions Solve $a_n = 3a_{n-1} + 5^n$, $a_0 = 4$ CO2-App (8) (ii) Calculate the number of positive integers not exceeding 750 CO2-App (8)

that are divisible by 2, 3,5 or by 7.

- (i) Let G be a finite group of order 'n' and H be any subgroup of G. CO3-App (10)Then Show that the order of H divides the order of G. (i.e.,) O(H) / O(G)
 - CO3-App (6)(ii) The binary operation * is defined on Q+ such that $a * b = \frac{ab}{2}$, $a, b \in Q^+$, Show that $(Q^+, *)$ is an abelian Group

Or

- (b) (i) A group homomorphism preserves identities, inverse and CO3-App (8)
 - (ii) If H and K is a sub group of G, Prove that $H \cup K$ is a subgroup CO3-App (8) of G if either $H \subseteq K$ or $K \subseteq H$.
- (i) Compute $\int_{0}^{\frac{\pi}{2}} \log \cos x dx$ CO4-App (8)
 - (ii) If $y = e^{ax} \sin bx$ Prove that $\frac{d^2y}{dx^2} 2a \frac{dy}{dx} + (a^2 + b^2)y = 0$ CO4-App (8)
 - (b) (i) Evaluate CO4-App (8) $\int_{1}^{1} \log \left(\frac{1}{x} - 1 \right) dx$
 - (ii) Compute the value of a,b,c if $\lim_{x\to 0} \frac{ae^x b\cos x + ce^{-x}}{r\sin x} = 2$ CO4-App (8)
- (i) Change the order of integration and hence evaluate CO5-App 20. (a) (8) $\mathbf{a} \quad \mathbf{a} + \sqrt{\mathbf{a}^2 - \mathbf{y}^2}$ $\int \int \int \mathbf{x} \mathbf{y} \, \mathbf{d} \, \mathbf{x} \, \mathbf{d} \, \mathbf{y}$ $0 \quad \mathbf{a} - \sqrt{\mathbf{a}^2 - \mathbf{y}^2}$

Or

the area between the parabola $y^2 = 4x$ and CO5-App (ii) Compute (8) 2x - 3y + 4 = 0

Compute the volume of sphere $x^2 + y^2 + z^2 = a^2$ (b) CO5-App (16)