A		Reg. No. :										
		Question	Paper (Code:	R1M	[03]					
	B.E./B.	Tech. DEGRE	E EXAM	INATI	ON, NO	OV/D	EC 2	2024	1			
			First Sen	nester								
		Computer Sc	cience and	l Busine	ess Sys	stems						
	R21UMA103- PROE	BABILITY AN	D INFER	ENTIA	L STA	TIST	ICA	LT	ECH	INIQ	UES	
		(R	egulation	s R202	1)							
Dura	ation: Three hours						М	axin	num	: 100	Mark	٢S
		Ans	wer ALL	Questio	ons							
		PART	A - (10 x 1	1 = 10 M	Marks)							
1.	The range of probabili	ity of an event	is								CO	6 – U
	(a) $0 \le P(E) \le 1$	(b) $0 \le P($	E) ≤ 2	(c) $1 \le 1$	$P(E) \leq$	2		(•	d) Nc	one of	these
2.	What is the probability	y of getting a si	um 9 fron	n two th	rows o	of a die	ce?			1	CO1 -	– App
	(a) 1/6	(b) 1/8		(c) 1	/9		(d) 1/	/12			
3.	Which of the followin	g discrete distr	ibution ha	is equal	mean	and v	ariaı	nce?	,		CO)6– U
	(a) Binomial	(b) Geom	etric	(c) Pois	son	(d) U	nifo	rm		
4.	The probability of bin	omial variate is	s B (5, ½)	. Then]	Mean i	S				(202 -	- App
	(a) 11/2	(b) 9/2		(c) 5/2			(d)	Non	ne of	the ab	ove
5.	If X and Y are indep variance of $3X + 4Y$	oendent RVs v	vith varia	nces 8	and 5	. Calc	ulate	e th	e		CO3 -	– App
	(a) 145	(b) 152		(c) 162				(0	d) 17	0	
6.	The joint probability of Estimate K =	lensity functior	n is f(x, y)	= k, 0	< x < 2	$2, 0 < \frac{1}{2}$	y < [1.			CO3 -	– App
	(a) 4	(b) 1		(c)	1/2				(0	d) 2		
7.	Find the median for th	e following da	ta 4, 6, 5,	9, 12, 3	6, 1, 10	, 13.				,	CO4 ·	– App
	(a) 12	(b) 8		(c) 6				(•	d)10		

8.	The range	of 16, 1	CO4 – App					
	(a) 12			(b) 8	8		(c) 9	(d) 10
9.	The degree	es of fre	edom	in t-tes	ts is			CO6 – U
	(a) n – 1			(b) 1	n – 2		(c) $n - 3$	(d) n – 4
10.	Large sam	ple size	is.					CO6–U
	(a) 30			(b) >	> 30		(c) < 30	(d) None of these
				F	ART -	- B (5 x	2= 10 Marks)	
11.	Find the m	nean for	the di	screte l	RV X v	vith pro	bability distribution	CO1– App
		Х	-2	-1	0	1		
		P(X)	0.2	2k	3k	0.3		
12.	If Moment	t genera	ting fu	inction	$M_{x}(t)$	$=\frac{2}{2-t}$, find the mean value	CO2– App

- 13. Let X and Y have Joint PDF f(x, y) = 2, 0 < x < y < 1. Find the Marginal PDF. CO3– App
- 14. The median and mode of a distribution are 21.2 and 21.4 respectively, find its CO4– App mean.
- 15. What are null and alternate hypothesis?.

$$PART - C (5 \times 16 = 80 \text{ Marks})$$

16. (a) (i) There are three urns containing white and black balls. The first CO1 - App (8) urn has 2 white and 3 black balls, the second urn has 4 white and 3 black balls, and the third urn has 3 white and 5 black ball. One urn is chosen at random, and a ball is selected from it, which turns out to be white. What is the probability that it came from the third urn? (ii) A R.V. X has the following distribution CO1 - App (8) Х 0 1 2 3 4 5 6 P(X)a 2a 2a 3a 3a 6a 8a

i) Find 'a' ii) Find $P(X \ge 2)$, $P(2 \le X \le 5)$ and iii) Find E(X).

Or

(b) (i) The density function of a R.V's X is given by f(x) = Kx(2 - x), CO1 - App (8) 0 ≤ x ≤ 2. Find the mean and variance.
(ii) If the MGF of a continuous R.V X is given by M_x(t) = 3/(3-t). CO1- App (8) Find the mean and variance of X.

CO6 - U

17. (a) (i) Explain Moment generating function, Mean and Variance of CO2- App (8) Poisson distribution.
(ii) Four coins are tossed simultaneously. What is the probability of CO2- App (8) getting (a) 2 heads (b) atleast 2 heads (c) atmost 2 heads.

Or

(b) (i) Establish the memoryless property of Exponential distribution. CO2- App (8)

(ii) The lifetime of a light bulb is X hours, where X can be modeled CO2 -App (8) by an exponential distribution with parameter $\lambda = 0.0125$. a) Find the mean and variance of the lifetime of a light bulb. b) Find the probability that the lifetime of a bulb is: (i) less than 100 hours; (ii) between 50 hours and 150 hours.

18. (a) (i) The joint probability mass function of (X,Y) is given by CO3 -App (8) P(x, y) = k(2x + 3y), x = 0, 1, 2; y = 1, 2, 3. Find all marginal distribution function and conditional distribution.

(ii) Joint pdf of x and y is $f(x, y) = \begin{cases} 2 - x - y, 0 \le x, y \le 1 \\ 0 & elsewhere \end{cases}$. Find (8)

marginal density function of x and y, mean of x, mean of y.

ſ)	r	
~	_	-	

(b) Calculate the correlation coefficient of the following

						0		
Height (cm) : X	158	160	163	166	168	171	174	176
Weight (kg) : Y	60	62	64	65	67	69	71	72

And also find Regression Equations x on y & y on x.

19. (a) (i) Compute the Variance of the following data: CO4 - App (8)Marks 0 - 55 - 1010 - 1515 - 2020 - 2525 - 30No. of 20 25 27 13 17 10 students (ii) Calculate the arithmetic mean of the following table: CO4 - App (8)

· /					-	
Marks	0-10	10 - 20	20-30	30 - 40	40 - 50	50 - 60
No. of students	23	25	22	20	33	25

CO3 - App

(16)

3

	Marks		0 –	6	6-12	2	12-18	3	18-24	,	24-30	30-36		
	No. of students		12		17		20		25		14	6		
(ii) Derive	the	mod	le of	the f	ollc	wing	tab	le:				CO4 -App	(8)
	Marks	0 -	10	10 -	- 20	20	- 30	30	0 – 40	40) – 50	50-60		
	No. of students	2	0	2	2		25		18		15	10		

(b) (i) Compute the Median of the following table:

20. (a) (i) The following data are collected on two characters.

	Smokers	Non Smokers
Literates	83	57
Illiterates	45	68

Using chi-square test to find is there any relation between smoking and literacy.

(ii) 4 coins were tossed 160 times and the following results were CO5 -App (8) obtained:

No. of heads:	0	1	2	3	4
Observed frequencies:	17	52	54	31	6

Under the assumption that the coins are unbiased, find the expected

frequencies of getting 0, 1, 2, 3, 4 heads and test the goodness of fit.

Or	
~ .	

(b) (i) Two random samples gave the following results:

CO5 - App (8)

CO4 - App

CO5 - App

(8)

(8)

(1) 1											
Samples	Size	Sample	Sum of the squares of								
		Mean	deviation from the mean								
1	10	15	90								
2	12	14	108								

Examine whether the samples come from the same normal population

(ii) Two horses A and B were tested according to the time (in CO5 -App (8) seconds) to run a particular race with the following results.

Horse A	28	30	32	33	33	29	36
Horse B	30	31	27	29	32	34	

Test whether horse A is running faster than B at 5% level