ł	4	Reg. No. :											
Question Paper Code: U1M04													
B.E./B.Tech. DEGREE EXAMINATION, NOV 2024													
	First Semester												
Computer Science and Business systems													
21UMA104- DISCRETE STRUCTURES AND ANALYSIS													
(Regulations 2021)													
Dur	ation: Three hours							М	axin	num:	100	Mar	ks
Answer ALL Questions													
		PART A - ((10 x 1	= 10	Marl	ks)							
1.	$P \rightarrow \neg Q$ is equivaled	nt to									С	CO1-2	App
	(a) $\neg P \land Q$	(b) $P \land \neg Q$		(c	c) ¬(.	$P \wedge Q$))			(d) P ~	$\neg Q$	
2.	How many "T" are	occurred in $(Q \land (P))$	$P \rightarrow Q))$	$\rightarrow P$							С	201-2	App
	(a) 4	(b) 3		(c	:) 1					(d) 2		
3.	Calculate how many	e how many integers between 1 to250 are divisible by 2 or 3							C	02- 4	App		
	(a) 41	(b)167		(c	:) 83					(d) 174	1	
4.	The particular integral of $a_n - 4a_{n-1} + 7a_{n-2} = 12$							CO2- App					
	(a) 4	(b) 3		(c	:) 7					(d) 0		
5.	For a Group $(Z, *)$,	* is defined by <i>a</i> * <i>b</i>	b = a + b	+1 tl	hen i	dentit	y ele	emei	nt is		C	03- 4	App
	(a) 0	(b)1		(c	:) -1					(d) 0 a	nd 1	
6.	The order of the ele	ment [2] in a group	(Z_8, \oplus_8))								COS	3- U
	(a) 4	(b) 3		(c	:) 2					(d) No	ne	
7.	The value of $\lim_{x \to 1}$	$\frac{x^2 - 1}{x - 1}$									C	04- /	App
	(a) 1	(b) 2		(c	:) 3					(d) 4		

8. CO4- App $\int_{2}^{6} \frac{dx}{x}$ (a) log 4 (b) log 6 $(c) \log 8$ $(d)\log 3$ The value of integral $\int_{0}^{1} \int_{0}^{2} xy^{2} dy dx$ 9. CO5 - App (a) $\frac{5}{2}$ (b) $\frac{1}{2}$ (c) $\frac{2}{3}$ (d) $\frac{4}{3}$ The value of integral $\int \int \int dx dy dz$ is equal to 10. CO₅- App (a) 10 (b) 9(c) 7(d) 12 $PART - B (5 \times 2 = 10 \text{Marks})$ 11. Derive R from the premises $P \rightarrow Q$, $Q \rightarrow R$ and P CO1- App 12. Compute the particular solution of the recurrence relation $a_n - 5a_{n-2} = 8n$. CO2- App 13 Define Ring and give an example. CO3- App 14. Compute y_2 if $x^2 + y^2 = 4$ CO₄- App 15. CO₅- App Change the order of integration $\int_{a}^{a} \int_{a}^{a} f(x, y) dx dy$ $PART - C (5 \times 16 = 80 Marks)$ 16. (a) (i) Calculate PCNF and PDNF for $(\neg P \rightarrow R) \land (Q \leftrightarrow P)$ CO1-App (8) (ii) Using the rules of inference derive & using CP Rule. CO1 App (8) $P \rightarrow (Q \rightarrow S), \neg R \lor P, Q \Rightarrow R \rightarrow S$ Or (i) Prove the following by Indirect Method. CO1 App (b) (8) $P \rightarrow Q, Q \rightarrow R, \neg (P \land R), P \lor R \Rightarrow R$ (ii) Prove that following Premises inconsistent: CO1 App (8)If Raj misses many classes through illness than he fails high school. If Raj fails high school then he is uneducated. If Raj reads a lot of books then he is not uneducated. Raj misses many classes through illness and reads a lot of books.

17.	(a)		CO2- App	(8)
		$\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{n(n+1)} = \frac{n}{(n+1)}$		
		(ii) Using generating functions Solve $a_n = 2a_{n-1} + 3^n$, $a_0 = 1$	CO2- App	(8)
		Or		
	(b)	(i) Solve	CO2- App	(8)
		$a_{n} + 3a_{n-1} + 2a_{n-2} = (6)^{n}, a_{0} = 0, a_{1} = 1$		
		(ii) Calculate the number of positive integers not exceeding 850 that are	CO2- App	(8)
			coz npp	(0)
18.	(a)	(i) Let G be a finite group of order 'n' and H be any subgroup of G	CO3- App	(10)
		. Then Show that the order of H divides the order of G. (i.e)		
		O(H) / O(G).	CO2 A	(0)
		(ii) The binary operation $*$ is defined on Q^+ such that	CO3- App	(6)
		$a * b = \frac{ab}{3}$, $a, b \in Q^+$, Show that $(Q^+, *)$ is ab abelian Group.		
		Or		
	(b)	$S = Q \times Q$, such that binary operation defined by	CO3 App	(16)
		(a,b)*(x,y) = (ax,ay + b)		
		(i) Prove that (S, *) is a semi group		
		(ii). Is it commutative and calculate the value of $(2,4)*(1,5)$		
		(iii) Find the identity Element (iv) Find the inverse of $(2, 2)$ *(8, 6) and $(0, 2)$ *(2, 5)		
		(iv) Find the inverse of (2,3)*(8,6) and (0,2)*(3,5)		
19.	(a)	(i) Compute	CO4- App	(8)
		$\frac{\pi}{2}$	11	
		$\int^2 \log \cos x dx$		
		0	CO4 App	(9)
		(ii) If $y = e^{ax} \sin bx$ Prove that $\frac{d^{2y}}{dx^{2}} - 2a \frac{dy}{dx} + (a^{2} + b^{2})y = 0$	CO4- App	(8)
		Or		
	(b)	(i) Compute	CO4- App	(8)
		$\int_{1}^{\frac{\pi}{2}} dx$		
		$\int_{0}^{2} \frac{dx}{1 + \sqrt{\tan x}}$		
		(ii) Evaluate	CO4- App	(8)
			201 1 PP	

U1M04

$$\lim_{x \to 0} \frac{xe^x - \log(1+x)}{x^2}$$

20. (a) (i) Compute the volume bounded by the cylinder $x^2 + y^2 = 9$ and CO5- App (8) the planes z = 0, y + z = 4(ii) Compute the area between the parabola $y^2 = 9x$ and $x^2 = 9y$ CO5- App (8) Or

(b) (i) Compute the area between the parabola
$$y^2 = 4x$$
 and CO5-App (8)
 $2x - 3y + 4 = 0$

(ii) Change the order of integration and hence evaluate CO5-App (8) $4a \ 2\sqrt{ax}$ $\int \int xy dy dx$ $0 \ \frac{x^2}{4a}$