A		Reg. No. :								
		Question Pa	aper Cod	le: U1N	M03					
	B.1	E./B.Tech. DEGR	EE EXAM	INATIO	N, NOV	2024				
]	First Semes	ter						
	Computer Science and Business systems									
	21UMA103- PROBABILITY AND INFERENTIAL STATISTICAL TECHNIQUES									
		(R	egulations 2	2021)						
		(Statistical	Fables may	be perm	nitted)					
Dur	ation: Three hours				Maxim	num: 1	00 Mai	iks		
		Answ	er ALL Qu	estions						
	PART A - $(10 \text{ x } 1 = 10 \text{ Marks})$									
1.	The range of proba	bility of an event	is						COé	5- U
	(a) $0 \le P(E) \le 1$	(b) 0≤P(E)≤	2	(c) 1 ≤	$\leq P(E) \leq 2$	((d) Non	e of t	these	
2.	If A and B are mut	ually exclusive ev	ents, then F	P(A or B) is				COé	5 -U
	(a) P(A).P(B)	(b) P(A) – P	(B)	(c) P(<i>A</i>	A) + P(B)) ((d) Non	e of t	these	
3.	A random variable mean of X.	e X is uniformly	distributed	betwee	n 3 and	11. Fi	ind the	CC)2 - <i>I</i>	Арр
	(a) 12	(b) 9		(c) 7				(d)	8	
4.	Which of the follow	wing discrete distr	ibutions fol	llow mer	mory less	prope	erty:		COé	5 -U
	(a) Geometric	(b) Gamma		(c) No	ormal	(d)	None of	of the	se	
5.	The joint probabilit Estimate K =	ty density function	n is f(x, y) =	= k, 0 < 2	x < 2, 0 <	y < 1.		CC	D3 - A	Арр
	(a) 4	(b) 1		(c) ½				(d) 2		
6.	Var(2X + 3) =							CC	D3 - A	Арр
	(a) 4 Var (X) + 9Va	ur (Y) (b) 4Var	(X)	(c) 9V	ar (Y)			(d) 0		
7.	The range of 16, 18	8, 18, 16, 18, 20, 1	7, 19, 16, 2	24.				C	O4 - <i>i</i>	Арр
	(a) 12	(b) 8		(c) 9				(d) 1	0	

- If the mean of first n natural numbers is 5n / 9, then n = ?8. CO4 - App (a) 7 (b) 9 (d) 10 (c) 6The degrees of freedom for chi square tests to fitting a binomial distribution 9. CO6 - U(a) n − 1 (b) n - 2(c) n - 3(d) n - 4
- 10. F test is used to test for equality of _____ CO6 - U (a) Mean (b) Variance (c) Both (a) & (b) (d) None of these

$$PART - B (5 x 2 = 10 Marks)$$

11. Find the mean for the discrete RV X with probability distribution CO1 - App

X	-2	-1	0	1
P(X)	0.2	3k	0.2	0.3

12. Calculate the MGF of the RV X whose PDF

P(X = x) =
$$\frac{1}{2^x}$$
, x = 0,1,2,3....

- 13. If Correlation coefficient $\gamma = 0.4$, $\sigma_x = 5$, $\sigma_y = 2$, find the regression CO3 App coefficient of y on x.
- 14. Two series A and B with equal means have standard deviations 9 and 10 CO4 App respectively, which series is more consistent
- 15. A standard sample of 200 tins of coconut oil gave an average weight of 4.95 CO5 App kg with a standard deviation of 0.21 kg. Do we accept that the net weight is 5 kg per tin at 5% level of significance?

CO1 – App (8)

Х	0	1	2	3	4	5	6	7
P(X)	0	k	2k	2k	3k	k ²	$2k^2$	$7k^2+k$

(i) Find the value of 'k'

(ii) Find
$$P(X < 6)$$
, P [1.5 < X < 4.5 / X > 2]

(ii) The cumulative distribution function of a random variable X CO1 – App (8) is $F(x) = 1 - (1 + x)e^{-x}$, x > 0. Find the probability density function

of X, mean and variance.

Or

CO2 – App

(b) (i) A R.V X has the PDF
$$f(x) = \begin{cases} \frac{1}{3}e^{-\frac{x}{3}}, & x \ge 0\\ 0, & x < 0 \end{cases}$$
 CO1 – App (8)

Find

(i) P[X > 3]

(ii) mean and variance.

(ii) For the following density function CO1 - App (8)

$$f(x) = ae^{|-x|}, -\infty < x < \infty$$
(i) Find the value of 'a'

(ii) Find mean and variance

17. (a) (i) Explain the M.G.F of Geometric distribution and hence find CO2 – App (8) mean and variance. (ii) The mileage which car owners get with a certain kind of CO2 – App (8)

radial tire is a random variable having an exponential distribution with mean 80,000 km. Derive the probabilities that one of these tires will last (i) at least 30,000 km and (ii) at most 40,000 km

(b) (i) A random variable X has a uniform distribution over (-4, 4) CO2 – App (8) compute

(i) P(X < 2) (ii) P(|X| < 3) and (iii) P(X > 1).

(ii) Explain the M.G.F of Binomial distribution and hence find CO2 – App (8) mean and variance.

18. (a) (i) The two dimensional RV (X,Y) has the density function CO3 - App (8)

$$f(x,y) = \frac{x+2y}{27} \ x = 0, 1, 2; y = 0, 1, 2$$

Find (i) The Marginal distribution function of X and Y(ii) Find the Conditional distribution of Y for X = 1

(ii) Obtain the Correlation coefficient for the	following data
---	----------------

CO3 – App (8)

X	12	15	17	18	23	16	25	27
Y	110	120	124	130	136	122	140	143

(b) (i) The joint probability mass function of (X,Y) is given by CO3 – App (8) P(x,y) = k(2x+3y), x = 0, 1, 2; y = 1, 2, 3. Find marginal distribution function and conditional distribution.

(ii) The joint pdf
$$f(x, y) = \begin{cases} \frac{8xy}{9}, & 0 \le x \le y \le 2\\ 0 & otherwise \end{cases}$$
 CO3 – App (8)

Find

$$(i) f_X(x)$$
$$(ii) f_y(y)$$

$$(u)f_{Y}(y)$$

(iii) conditional density function of X given Y.

19. (a) (i) Compute the Median of the following table:

· · ·						<u> </u>	,						11
Marks		0-6	6-12	12	2-18	18	8-24	24	1-30	30)-36		
No. of students		12	17	20)	25	5	14	1	6			
(ii) Calcula	ite	the ari	hmetic n	near	n of t	he	follov	vin	g tabl	e:		-	CO4 – App
Marks	0	- 10	10 - 20	4	20 - 30)	30 -4	40	40- :	50	50 -	60	
No. of students	2.	3	25	4	22		20		33		25		
				(Dr								
(i) Find the	e va	alue of	x, when	mo	de is	67							CO4 – App

(b) (i) Find the value of x, when mode is 67

if i find the value of x, when mode is of											
Marks		40-50	50	50-60		0-70 70-		80	80-90		
No. of students ii) Compute th		5	X	Х		5	12	7			
ii) Compute the Variance of the following data:											
Marks	0 -5	5 5 -	10	10 -	15	15 -	20	20 -	25	25	- 30
No. of students	5	12		21		22		13		10	

CO4 – App

CO4 – App

(8)

(8)

(8)

(8)

CO5 – App (8)

Samples	Size	Sample	Sum of the squares of
		Mean	deviation from the mean
1	10	15	90
2	12	14	108

Examine whether the samples come from the same normal population

(ii) Sandal powder is packed into packets by a machine. A CO5 – App (8) random sample of 12 packets is drawn and their weights are found to be (in kg) 0.49, 0.48, 0.47, 0.48, 0.49, 0.50, 0.51, 0.49, 0.48, 0.50, 0.51 and 0.48. Test if the average weight of the packing can be taken as 0.5 kg

Or

(b) (i) Two researchers adopted different sampling techniques while CO5 – App (8) investigating the same group of students to find the number of students falling into different intelligence level. The results are as follows

Research	Below	Average	Above	Excellent
	Average		Average	
X	86	60	44	10
Y	40	33	25	2

(ii) Two independent samples of sizes 9 and 7 from a normal CO5 – App (8) population had the following values of the variables.

Sample I	18	13	12	15	12	14	16	14	15
Sample II	16	19	13	16	18	13	15		

Do the estimates of the population variance differ significally at 5% level?

U1M03

U1M03

U1M03