		Reg. No. :							
	[Question Paper	Code:U5D02						
B.E./B.Tech. DEGREE EXAMINATION. NOV 2024									
Fifth Semester									
Computer Science and Business Systems									
21UCB502-COMPILER DESIGN									
(Regulations 2021)									
Durat	ion: Three hours		Max	imum: 100 Marks					
PART A - $(10 \text{ x } 1 = 10 \text{ Marks})$									
1.	is considere	ed as a sequence of cha	racters in a token.	CO1- U					
	(a) Texeme	(b) Pattern	(c) Lexeme	(d) Mexeme					
2.	How many tokens the	statement sum=sum+I	; has?	CO1- U					
	(a) 5	(b) 6	(c) 10	(d) 15					
3.	Which of the following is left recursive production?			CO1- U					
	i) E→E+T T								
	ii)T → U T*U								
	iii) E → id								
	(a) i only	(b) ii only	(c) i and ii	(d) all of three					
4.	A grammar that produce called as	ices more than one part	se tree for some sentence is	CO1- U					
	(a) Ambiguous	(b) Unambiguous	(c) Regular	(d) none					
5.	The phase 'Semantic A	Analysis' is responsible	e for in Compiler.	CO1- U					
	(a) Check semantics	(b) Static checking	(c)Type checking	(d) All of these					
6.	The representations of	f Intermediate code are		CO1- U					
	i.Quadriple								
	ii.Triple								
	iii.Indirect Triple								
	(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii					

7.	Whenever a proced stack, also known a	CO1- U				
	(a) Access Stack	(b) Control stack	(c) Formal Stack	(d) Return Stack		
8.	In Algebraic expr replaced by?	CO1- U				
	(a) a	(b) INC a	(c) DEC a	(d) MUL a		
9.	Optimization can be	CO1- U				
	(a) 2	(b) 3	(c) 4	(d) 5		
10.	Before generating intermediate code b	Before generating intermediate code, the compiler can modify the intermediate code by address calculations and improving loops				
	(a) TRUE	(b) FALSE	(c) Can be true or false	(d) Can not say		
		PART – B (5 2	x 2= 10Marks)			
11.	Define Translator an	Define Translator and types of translators				
12.	Find FIRST and FOLLOW for the given grammar			CO2-App		
	S→CC					
	C→cC					
	C→d					
13.	Define Three Address code.			CO1-U		
14.	Give the variety of outputs in the target programs.			CO1-U		
15.	Draw the DAG for the following basic block		CO1-App			
	a=b+c					
	b = a - d					
	c = b + c					
	$\mathbf{d} = \mathbf{a} - \mathbf{d}$					
		PART – C (5 x 16= 80Marks)			
16.	(a) Illustrate how transformed in x=(a+b) * (c+d)	the following high to machine code due) with the neat sketch of Or	level language statement is ring the compilation process of phases of compiler.	CO2-App (16)		
	(b) Illustrate the pr	ocess of compilation fo	or the program segment	CO2 App (16)		

(b) Illustrate the process of compilation for the program segment CO2-App (16) a=b+c*60 with a neat sketch. 17. (a) Design Predictive parser for the Grammar

S->(L) |a L->L,S|S

and parse the input string (a, a)

Or

(b) Design the predictive parser for the following grammar and parse CO2-App (16) the string and check whether the string ((id+id)*id) is valid or not.

 $E \rightarrow E+T | T$ $T \rightarrow T^*F | F$ $F \rightarrow (E) | id$

18. (a) Describe the role of syntax-directed translation in handling Boolean CO1-U (16) expressions within a compiler. Provide a detailed explanation of the translation scheme, including the use of attributes and rules.

Or

(b) Explain the translation of Arithmetic expressions in detail. CO1-U (16)

19. (a) Construct the DAG for the following basic block

t1:=4*i
t2:=a[t1]
t3:=4*i
t4:=b[t3]
t5:=t2*t4
t6:=prod+t5
prod:=t6
t7:=i+1
i:=t7
if i<=20 goto 1

Or

CO2-App

(16)

- (b) Convert the following three address code into flow graph and CO2-App (16) optimze the flow graph 1. i=12. j=13. t1=10*i4. t2=t1+j5. t3=8*t26. t4=t3-88
 - 7. a[t4]=0
 - 8. j=j+1
 - 9. if j<=10goto 3
 - 10. i=i+1
 - 11. if i<=10 goto 2
 - 12. i=1
 - 13. t5=i-1
 - 14. t6=88*t5
 - 15. a[t6]=1
 - 16. i=i+1
 - 17. if i<=10 goto 13

20.	(a)	Describe in detail about Heap Management.	CO1-U	(16)
		Or		
	(b)	Explain the data access without nested procedure and the issues	CO1-U	(16)

with nested procedure.