A		Reg. No. :											
Question Paper Code: U1P03													
B.E. / B.Tech. DEGREE EXAMINATION, NOV 2024													
First Semester													
Civil Engineering													
21UPH103- ENGINEERING PHYSICS													
(Common to ALL branches)													
(Regulation 2021)													
Duration: Three hours Maximum: 100 Marks										arks			
Answer ALL questions													
PART A - (10 x 1 = 10 Marks)													
1.	The coordination number for FCC lattice is										CO	1- U	
	(a) 12	(b) 6		(c) 8					((d) 24	4		
2.	The number of atoms per unit cell for a simple cubic crystal structure is CO1-									1- U			
	(a) 4	4 (b) 1 (c) 2 (d) 6											
3.	Atomic packing factor for BCC crystal lattice is									CO	1- U		
	(a) 32%	(b) 52%		(c) 74	%				((d) 6	8%		
4.	If N_1 and N_2 are the number of atoms in ground state and excited state CO2- U respectively, then in population inversion												
	(a) $N_1 < N_2$	(b) $N_1 > N_2$		$(c) N_1$	=	N_2			((d) N	[1 > 2]	$2N_2$	
5.	A hologram contains	the information abo	out									CO	2- U
	(a) Amplitude of the object (b) Phase of the object												
	(c) Both amplitude and phase of the object (d) None of these												
6.		λ_m is the wavelength corresponding to maximum energy and T is the CO3-U posolute temperature, then according to Wien's displacement law,								3- U			
	(a) $\lambda_m T = constant$	(b) $\lambda_m / T = constant$	nt (c) λ _m '	Γ ^{1/2} =	con	stant	(0	l) λ _m	/ T	$\frac{1}{2} = 0$	const	ant

7.	According to Planck's hypothesis, the exchange of energy between the CO3-U radiation and matter is not continuous but it is limited to the integral multiple of							
	(a) $1/hv$ (b) h/v (c) v/h (d) hv							
8.	a particle having mass m is moving with velocity v, the deBroglie CO3- U avelength associated with the matter wave is							
	(a) $\lambda = h/mv$ (b) $\lambda = h/mv^2$ (c) $\lambda = h^2/mv$ (d) $\lambda = mv/h$							
9.	The modulus of elasticity is CO4- U							
	(a) Stress × Strain (b) Stress / Strain (c) Strain / Stress (d) Stress × Young's modulus							
10.	The ratio of lateral strain to linear strain is CO4- U							
	(a) Elastic limit (b) Young's modulus (c) Rigidity modulus (d) Poisson's ratio							
PART - B (5 x 2= 10 Marks)								
11.	Draw the planes for Miller Indices (100), (110), and (111) CO1-App							
12.	Why colours are formed in thin films? CO2-U							
13.	Distinguish between spontaneous and stimulated emissions? CO3- U							
14.	What is physical significance of wave function?CO4-U							
15.	What are the effects of hammering and annealing on elasticity of a material? CO5-U							
	PART – C (5 x 16= 80 Marks)							
16.	(a) What are miller indices? Sketch two successive (110) planes. CO1-U (16)Show that for a cubic lattice the distance between two successive							

$$d = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$

Or

plane (h k l) is given by

(b) What is axial ratio? Prove that the packing factor of HCP is 0.74. CO1- U (16)

17. (a) Explain the formation of interference fringes in an air-wedge CO2-U (16) shaped film. How is the thickness of the wire determined by this method?

Or

(b) Describe the construction and working of CO_2 laser. CO2-U (16)

18. (a) Derive Einstein's A and B coefficients. CO1- U (16)

Or

- (b) Explain the modes of vibrations of CO_2 molecule. Describe the CO1-U (16) construction and working of CO_2 laser with necessary diagrams.
- (a) With the concepts of quantum theory of black body radiation, CO4-U (16) derive an expression for energy distribution and use it to prove Wien's law and Rayleigh jeans law.

Or

- (b) Obtain the Eigen values and Eigen functions for an electron CO4-U (16) enclosed in a one dimensional potential box.
- 20. (a) A patient's leg was put into traction, stretching the femur from a CO6- Ana (16) length of 0.46 m to 0.461 m. The femur has a diameter of 3.05 cm. With the knowledge that bone has a Young's modulus of $\sim 1.6 \times 10^{10}$ in tension, what force was used to stretch the femur?

Or

(b) A circular and square cantilever is made of same material and has CO6- Ana (16) equal area of cross-section and length. Analyze the ratio of their depression for a given load.

U1P03