		Question Pap	er Code: U9376S					
B.E. / B.Tech. DEGREE EXAMINATION, NOV 2024								
	Open elective							
21UEE976 - INDUSTRIAL AUTOMATION AND CONTROL								
		(Common to A	All branches)					
		(Regulatio	ons 2021)					
Dura	ation: Three hours			Maximum: 10	0 Marks			
		Answer All	Questions					
PART A - $(10 \times 1 = 10 \text{ Marks})$								
1.	The number of inputs in the following Ladder diagram is				CO1-U			
	Rail Rung 1	Rail						
	(a) 4	(b) 2	(c) 1	(d) 3				
2.	Using the state of an oladder logic program is	-	in the further stages of		CO1 -U			
	(a) Feedback	(b) Latching	(c) Breaking	(d) Swapping				
3.	Which of the following	g is an active transduc	er?		CO1 -U			
	(a) LVDT	(b) Potentiometer	(c) RTD	(d) Thermoco	uple			
4.	Resistive Temperature	Detectors (RTD) have	re		CO1 -U			
	(a) positive temperature coefficient		(b) negative temperate	are coefficient				
	(c) Zero temperature coefficient		(d) None of these					
5.	In any computer-bas computer has to be the		d control, the input of	of a	CO1 -U			
	(a) Sensor		(b) Controller					

(d) Digital to analog converter

(c) Analog to digital converter

6.	Digital compute perform data as applications.	CO1 -U					
	(a) Active	(b) Passive	(c) Hybrid	(d) None of these			
7.	The main function of the CPU in a PLC is						
	(a) To provide power to the PLC						
	(b) To store the program						
	(c) To execute the program and control the input and output devices						
	(d) To communicate with other PLCs						
8.	Role of PLC's communication interface is to CO1 -U						
	(a) communicate with other PLC						
	(b) communicate with an HMI or SCADA system						
	(c) communicate with other devices or system						
	(d) All these						
9.	How does a DC	CS typically handle alarm	n management?	CO1 -U			
	(a) By ignoring minor alarms						
	(b) By prioritizing and displaying alarms to operator						
	(c) By storing alarms for later review						
	(d) By automat	ically silencing all alarm	S				
10.	What role does	a supervisory controller	play in a DCS?	CO1 -U			
	(a) It controls individual devices						
	(b) It coordinates the actions of multiple control loops						
	(c) It monitors the health of the DCS network						
	(d) It processes and archives historical data						
		PART – B	$(5 \times 2 = 10 \text{ Marks})$				
11.	What is the role in industrial aut		tomation? State any two benefits or	f PLC CO1 -U			
12.	State the princip	ple of measurement of vo	olumetric flowrate using Orifice pl	ate. CO1 -U			
13.	What is Hum		? State its role in computer	aided CO1 -U			

14. Give an example of a process application for which PLC will be the best CO1-U

choice. Justify it.

15. List the DCS Supervisory Computer Tasks.

 $PART - C (5 \times 16 = 80 \text{ Marks})$

16. (a) Explain the role of PLC in industrial automation. Also explain the CO1 -U (16) ladder logic programming of PLC with a simple example.

Or.

- (b) With a neat sketch, explain the functional components of a typical CO1 -U (16) SCADA and describe their role in detail.
- 17. (a) Draw the structure of a typical control valve and explain its CO1-U (16) operation and various types of operation.

Or

- (b) Explain the working principle of induction type and optical type CO1 -U speed measurement sensors. (16)
- 18. (a) Give an example for a computer-based measurement and control CO2 -App (16) system and explain its operation with the aid of neat block diagram.

Or

- (b) Explain in detail about Man-machine interface with necessary CO2 -App (16) sketches.
- 19. (a) Draw a ladder logic program and explain it in detail. List the CO1-U advantages of Ladder logic program. (16)

Or

- (b) Draw and explain the operation of a simple industrial mixer CO1 -U system and explain how it can be controlled using a PLC. (16)
- 20. (a) List the functional components of a DCS and explain their role in CO1 -U (16) industrial automation.

Or

(b) Give an example process that can be controlled using DCS and CO1-U (16) explain it. List the pros and cons of DCS in industrial automation.